Teoria dei Numeri – Problemi di ammissione

- 1. Trovare tutte le coppie (p,q) di numeri primi tali che sia p-q, sia pq-q sono quadrati perfetti.
- 2. Una sequenza di interi positivi $(a_n)_{n\geq 1}$ è Wintercamposa se è strettamente crescente e per ogni indice $n\geq 2022$ il numero a_n è il minimo intero positivo maggiore di a_{n-1} tale che esista un sottoinsieme non vuoto A_n di $\{a_1,a_2,\ldots,a_{n-1}\}$ con la proprietà che $a_n\cdot\prod_{a\in A_n}a$ è un quadrato perfetto.

Dimostrare che esistono due costanti $c_1, c_2 > 0$ tali che per ogni sequenza Wintercamposa $(a_n)_{n \geq 1}$ esiste un intero positivo N per cui $c_1 \cdot n^2 \leq a_n \leq c_2 \cdot n^2$ per ogni $n \geq N$.

Si noti che N può dipendere dalla sequenza Wintercamposa, mentre c_1 e c_2 no.

3. Sia $n \ge 2$ un intero, sia $m = \varphi(n)$, e sia $\{a_1, \ldots, a_m\}$ l'insieme degli interi positivi minori di n e relativamente primi con n. Supponiamo che ogni primo p che divide m divida anche n. Dimostrare che per ogni intero positivo k si ha

$$m \mid a_1^k + \dots + a_m^k$$
.