Algebra – Problemi di Ammissione

- 1. Dato un polinomio P a coefficienti interi, definiamo il polinomio f(P) nel modo seguente:
 - Se P è un polinomio monico con grado $n \ge 1$ e con n radici intere $r_0 \le r_1 \le \cdots \le r_{n-1}$ (contate con la relativa molteplicità) allora

$$(f(P))(x) = x^n + r_{n-1}x^{n-1} + r_{n-2}x^{n-2} + \dots + r_1x + r_0$$

• Altrimenti, f(P) è il polinomio nullo.

Trovare tutti i polinomi non costanti e monici a coefficienti interi tale che la sequenza $P, f(P), f(f(P)), \ldots$ non contiene il polinomio nullo.

2. Trovare tutte le funzioni $f: \mathbb{R}^+ \to \mathbb{R}^+$ tali che

$$f(x^2 + f(xy)) + f(y^2 + f(xy)) = (x + y)^2$$

per ogni $x, y \in \mathbb{R}^+$

3. Siano n > k due numeri interi positivi e siano a_1, \ldots, a_n numeri reali nell'intervallo aperto (k-1,k). Siano x_1, \ldots, x_n numeri reali positivi tale che per ogni sottoinsieme $I \subset \{1, \ldots, n\}$ con cardinalità k, si ha

$$\sum_{i \in I} x_i \le \sum_{i \in I} a_i.$$

Trovare il massimo di $x_1x_2\cdots x_n$.