OLIFORUM CONTEST

4TH EDITION

Problem 1. Dato un primo p, consideriamo degli interi 0 < a < b < c < d < p tali che a^4, b^4, c^4 e d^4 danno lo stesso resto quando vengono divisi per p. Mostrare che

$$a+b+c+d$$
 divide $a^{2013}+b^{2013}+c^{2013}+d^{2013}$.

(Proposto da Paolo Leonetti)

Problem 2. Dato un triangolo acutangolo ABC, definiamo M il punto medio di AB, e P e Q i piedi delle altezze da A a BC e da B a AC rispettivamente. Mostrare che se la retta AC è tangente alla circonferenza circoscritta a BMP allora la retta BC è tangente alla circonferenza circoscritta a AMQ.

(Proposto da Samuele Mongodi)

Problem 3. Dato un intero n maggiore di 1, supponiamo che x_1, \ldots, x_n sono interi tali che nessuno di essi è divisibile per n, e neanche la loro somma. Mostrare che esistono almeno n-1 sottoinsiemi non vuoti $\mathcal{I} \subseteq \{1, \ldots, n\}$ tali che $\sum_{i \in \mathcal{I}} x_i$ è divisibile per n.

(Proposto da Paolo Leonetti)

Problem 4. Siano p, q interi tali che il polinomio $x^2 + px + q + 1$ ha due radici intere positive. Mostrare che $p^2 + q^2$ è composto.

(Proposto da Simone Di Marino)

Problem 5. Siano x, y, z interi positivi distinti tali che $(z + x)(z + y) = (x + y)^2$. Mostrare che $x^2 + y^2 > 8(x + y) + 2(xy + 1)$.

(Proposto da Paolo Leonetti)

Problem 6. Sia P un poliedro le cui facce sono colorate di bianco o di nero di modo tale che ci sono più facce nere e non ci sono due facce nere adiacenti (due facce sono definite adiacenti se hanno un lato in comune). Mostrare che P non è circoscritto a una sfera.

(Proposto da Emanuele Tron)

Problem 7. Per ogni intero positivo n, definiamo f(n) il numero di sottoinsiemi non vuoti $\mathcal{N} \subseteq \{1,\ldots,n\}$ tali che $\gcd(n \in \mathcal{N}) = 1$. Mostrare che f(n) è un quadrato se e solo se n = 1.

(Proposto da Paolo Leonetti)

Problem 8. Due numeri reali distinti sono scritti su ogni vertice di poligono convesso con 2012 lati. Mostrare che si può rimuovere un numero da ogni vertice di modo tale che i numeri rimanenti su due vertici adiacenti sono sempre distinti.

(Proposto da Paolo Leonetti)