La ricerca ha trovato 165 risultati

da Mattysal
oggi, 01:04
Forum: Geometria
Argomento: IMO vecchio personalizzato
Risposte: 0
Visite : 48

IMO vecchio personalizzato

Sia $ABC$ un triangolo e consideriamo la circonferenza $\omega_B$ passante per $B$ e tangente ad $AC$ in $A$ e la circonferenza $\omega_C$ passante per $C$ e tangente ad $AB$ in $A$. $\omega_B$ interseca $BC$ nuovamente in $P$ e $\omega_C$ interseca $BC$ nuovamente in $Q$. Siano $P’$ e $Q’$ rispetti...
da Mattysal
oggi, 00:51
Forum: Geometria
Argomento: Da Febbraio alle EGMO
Risposte: 0
Visite : 40

Da Febbraio alle EGMO

Posto qui due problemi: uno di livello Febbraio e uno preso dalle EGMO di quest’anno. L’intenzione è quella di aiutare e incoraggiare coloro che vogliono migliorare in G a risolvere un problema internazionale, perché vi dirò, dopo aver risolto il Problema 1 di questo topic, il problema delle EGMO mi...
da Mattysal
17 giu 2020, 12:44
Forum: Olimpiadi della matematica
Argomento: 1st Global (?!) Mathematical Competition
Risposte: 0
Visite : 445

1st Global (?!) Mathematical Competition

La stragrande maggioranza di voi sa che mi piace tantissimo scrivere gare e finalmente la cosa è stata estesa a tutto il mondo :D ma come sempre il mio invito è rivolto anche a voi. La gara consiste di 16 problemi da fare in mezz'ora (4 di ogni materia, ordinati per presunta difficoltà). Il problema...
da Mattysal
08 giu 2020, 12:56
Forum: Olimpiadi della matematica
Argomento: gara febbraio 2019
Risposte: 10
Visite : 2474

Re: gara febbraio 2019

Lemma
Dati due punti [math] nel piano e altri due punti [math] che stanno sullo stesso semipiano delimitato dalla retta [math], [math] è ciclico se [math]
da Mattysal
03 giu 2020, 20:45
Forum: Olimpiadi della matematica
Argomento: Seconda Simulazione Gara Cesenatico 2020
Risposte: 5
Visite : 1821

Re: Seconda Simulazione Gara Cesenatico 2020

Mi dicono stasera alle 21:45
da Mattysal
27 mag 2020, 14:01
Forum: Algebra
Argomento: Direttamente dalla Thailandia (ez)
Risposte: 0
Visite : 819

Direttamente dalla Thailandia (ez)

Siano [math] e supponiamo che tutte le radici dell’equazione
[math]
siano tutte reali. Dimostrare che
[math]
da Mattysal
26 mag 2020, 13:04
Forum: Algebra
Argomento: Ineq in R
Risposte: 2
Visite : 574

Re: Ineq in R

TeoricodeiNumeri ha scritto:
25 mag 2020, 20:14
Testo nascosto:
Per Cauchy-Schwarz iterato abbiamo che
$LHS\geq (a^2 b^2+1)^2 (1+c^2 d^2)^2 =[(a^2 b^2 +1)(1+c^2 d^2)]^2 \geq (ab+cd)^4=RHS$
Ggwp
da Mattysal
25 mag 2020, 13:02
Forum: Teoria dei Numeri
Argomento: Un vecchio classico
Risposte: 6
Visite : 1571

Re: Un vecchio classico

Mostrare che per ogni $n\geq 2$ naturale si ha che l'espressione \begin{equation} 1+\frac{1}{2}+\frac{1}{3}+...+\frac{1}{n}=\sum_{i=1}^{n} \frac{1}{i} \end{equation} non è un numero intero. Bonus Dimostrare che per ogni $n\geq 1$ naturale si ha che l’espressione \begin{equation} 1+\frac{1}{3}+\frac...
da Mattysal
25 mag 2020, 12:58
Forum: Algebra
Argomento: Ineq in R
Risposte: 2
Visite : 574

Ineq in R

Siano [math].
Dimostrare che:
[math]
da Mattysal
18 mag 2020, 16:10
Forum: Olimpiadi della matematica
Argomento: Cesenatico 2020
Risposte: 4
Visite : 891

Re: Cesenatico 2020

Si è già fatto l'1 Maggio.
da Mattysal
17 mag 2020, 22:02
Forum: Olimpiadi della matematica
Argomento: Simulazione Gara Febbraio
Risposte: 2
Visite : 3425

Re: Simulazione Gara Febbraio

Purtroppo non lo trovo più, ho cambiato PC dopo la gara e ovviamente non ho salvato nulla.
da Mattysal
17 mag 2020, 21:50
Forum: Olimpiadi della matematica
Argomento: I Tetrathlon Matematico
Risposte: 1
Visite : 1132

I Tetrathlon Matematico

Pare che ogni ponte porti con sé una gara in questo periodo...
Sono lieto di annunciarvi che l'1 Giugno avverrà il I Tetrathlon Matematico.
4 prove di problemi a risposta numerica. Ogni prova, una materia :D .

Per maggiori info:
http://matteosalicandro.altervista.org/index.php
da Mattysal
08 mag 2020, 09:31
Forum: Teoria dei Numeri
Argomento: Il più grande primo
Risposte: 5
Visite : 853

Re: Il più grande primo

L’insieme delle soluzioni è corretto, ma come dimostri che è l’unica?
da Mattysal
07 mag 2020, 17:12
Forum: Algebra
Argomento: R+ in successione
Risposte: 3
Visite : 709

Re: R+ in successione

Poniamo x_{2021}=x_{2020}^2-x_{2020}+1 , abbiamo quindi x_{i+1}=x_i^2-x_i+1 per ogni 0<i<2021 e x_1=x_{2021} . Ora dimostriamo che x_{i+1} \geq x_{i} per ogni i tale che 0<i<2021 : supponiamo per assurdo ciò sia falso, allora si avrebbe x_{i+1} < x_i \Rightarrow x_i^2-x_i+1 < x_i \Rightarrow (x_i-1...