Tor vergata meno old

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
Avatar utente
razorbeard
Messaggi: 122
Iscritto il: 20 apr 2011, 16:28

Tor vergata meno old

Messaggio da razorbeard » 19 nov 2020, 10:51

Per un certo polinomio $P$ vale la seguente proprietà : $P(n + 2) + P(n) = n^4 + 2$ per ogni intero positivo $n$. Quanto vale $P(10)$?
E' un buon giorno... per morire

Maionsss
Messaggi: 65
Iscritto il: 14 feb 2018, 16:10

Re: Tor vergata meno old

Messaggio da Maionsss » 22 nov 2020, 21:07

Quanto deve valere il grado di $P$ ? Una volta capito quello sistemi i coefficienti ricordandoti del principio di identitá

matpro98
Messaggi: 478
Iscritto il: 22 feb 2014, 18:42

Re: Tor vergata meno old

Messaggio da matpro98 » 22 nov 2020, 21:29

puoi capirlo da te

Avatar utente
razorbeard
Messaggi: 122
Iscritto il: 20 apr 2011, 16:28

Re: Tor vergata meno old

Messaggio da razorbeard » 26 nov 2020, 17:10

In che modo? Avevo iniziato impostando dei sistemi con $P(1)$,$P(2)$, ecc... ma poi mi sono arenato
E' un buon giorno... per morire

matpro98
Messaggi: 478
Iscritto il: 22 feb 2014, 18:42

Re: Tor vergata meno old

Messaggio da matpro98 » 26 nov 2020, 20:25

cosa succede al grado del polinomio al primo membro? e al secondo membro? cosa concludi?

Fede:)
Messaggi: 5
Iscritto il: 15 mar 2020, 11:51

Re: Tor vergata meno old

Messaggio da Fede:) » 26 nov 2020, 20:27

Non so se sia giusta perché non ho usato il fatto che n è un intero positivo.
Testo nascosto:
[math] , mettendo nella condizione del testo e considerando i termini di grado massimo ottengo [math] quindi per il principio di identità tra polinomi ho [math] quindi [math] e [math] quindi il polinomio ha grado 4 e coefficiente direttore 1/2.
Considero ora i termini noti [math] da cui [math]. Ma il termine noto c è uguale a [math] quindi partendo da [math] con un po' di conti arrivo a [math].

matpro98
Messaggi: 478
Iscritto il: 22 feb 2014, 18:42

Re: Tor vergata meno old

Messaggio da matpro98 » 27 nov 2020, 13:29

beh, hai usato quell'ipotesi (con il "per ogni" davanti) quando hai applicato il principio di identità :wink: direi che va bene come soluzione

fph
Site Admin
Messaggi: 3835
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Re: Tor vergata meno old

Messaggio da fph » 27 nov 2020, 16:28

Il passaggio delicato, insomma, è questo: se due polinomi $P(x)$ e $Q(x)$ assumono valori uguali quando vengono valutati in un numero infinito di valori (per esempio, appunto, $n=1,2,3,\dots$), allora sono uguali coefficiente per coefficiente. In una gara a squadre non serve scriverlo, ma è utile comunque avere in testa che sta succedendo, specialmente per rispondersi alla domanda "dove sto usando questa ipotesi sugli interi positivi".
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]

Rispondi