Meglio di AM-GM

Polinomi, disuguaglianze, numeri complessi, ...
Rispondi
Avatar utente
jordan
Messaggi: 3988
Iscritto il: 02 feb 2007, 21:19
Località: Pescara
Contatta:

Meglio di AM-GM

Messaggio da jordan »

Own. Dati dei reali positivi $a_1,\ldots,a_n$ con media aritmetica $A$ e geometrica $G$, per qualche $n\ge 4$, sia $k:=\max_{i,j}{\frac{(a_i-a_j)^2}{a_ia_j}}$. Mostrare che allora

$$\frac{A}{G} \ge \left(1+\frac{k}{n}\right)^{\frac{1}{n}}. $$


Ps. Qualcuno sa se è un risultato conosciuto?

Ps2. Aggiunto $n\ge 4$, grazie a Gottinger per avermelo fatto notare!
The only goal of science is the honor of the human spirit.
spugna
Messaggi: 421
Iscritto il: 19 mar 2009, 22:18
Località: Forlì

Re: Meglio di AM-GM

Messaggio da spugna »

Per induzione

- Passaggio da $n$ a $n+1$: consideriamo la $(n+1)$-upla $a_1,a_2,...a_n,x$: dato che la disuguaglianza da dimostrare è simmetrica, possiamo porre $a_1 \le a_2 \le ... \le a_n$ e $a_1 \le x \le a_n$. Fatte queste ipotesi, abbiamo $k=\dfrac{(a_n-a_1)^2}{a_na_1}$, perché, svolgendo i conti, si deve massimizzare $\dfrac{a_i}{a_j}+\dfrac{a_j}{a_i}$, e quindi $\dfrac{\max\{a_i,a_j \} }{\min\{a_i,a_j \} }$ deve essere più grande possibile. Notiamo in particolare che $k$ non dipende dalla presenza o meno di $x$ tra i numeri presi in considerazione.

Chiamiamo ora $A$ e $G$ rispettivamente la media aritmetica e quella geometrica degli $a_i$ e riscriviamo la tesi:

$\dfrac{nA+x}{(n+1)\sqrt[n+1]{G^nx}} \ge \sqrt[n+1]{ 1+\dfrac{k}{n+1} }$

Interpretando il primo membro come una $f(x)$, è sufficiente dimostrare la disuguaglianza nel caso in cui $x$ è il punto di minimo, ovvero $x=A \in [a_1,a_n]$ (dimostrazione senza derivate nel testo nascosto)
Testo nascosto:
Ignorando temporaneamente la costante al denominatore, si vuole dimostrare che $\dfrac{nA+x}{\sqrt[n+1]{x}} \ge \dfrac{(n+1)A}{\sqrt[n+1]{A}}$, equivalente a
$\dfrac{1}{n+1} \left( n+\dfrac{x}{A} \right) \ge \sqrt[n+1]{\dfrac{x}{A}}$

ma questa è la $AM-GM$ "classica" applicata a $\dfrac{x}{A}$ e altri $n$ numeri uguali a $1$ (con uguaglianza se e solo se $x=A$)
Sostituiamo quindi $x=A$, eleviamo alla $n+1$ e otteniamo
$\dfrac{A^n}{G^n} \ge 1+\dfrac{k}{n+1}$

che è vera perché si può "mettere in mezzo" $1+\dfrac{k}{n}$: una disuguaglianza è ovvia mentre l'altra è l'ipotesi induttiva

- Caso $n=4$: detti $w,x,y,z$ i quattro numeri, in ordine crescente, vogliamo provare che

$\dfrac{w+x+y+z}{4\sqrt[4]{wxyz}} \ge \sqrt[4]{1+\dfrac{(w-z)^2}{4wz}}$

Ponendo $x+y=2m$, possiamo ottenerla in questo modo:

$\dfrac{w+x+y+z}{4\sqrt[4]{wxyz}} \ge \dfrac{w+2m+z}{4\sqrt[4]{m^2wz}}=\dfrac{1}{2\sqrt[4]{wz}} \cdot \dfrac{1}{2} \left( \dfrac{w+z}{\sqrt{m}}+2 \sqrt{m} \right) \ge \dfrac{\sqrt{2(w+z)}}{2\sqrt[4]{wz}}=\sqrt[4]{1+\dfrac{(w-z)^2}{4wz}}$
"Bene, ora dobbiamo massimizzare [tex]\dfrac{x}{(x+100)^2}[/tex]: come possiamo farlo senza le derivate? Beh insomma, in zero fa zero... a $+\infty$ tende a zero... e il massimo? Potrebbe essere, che so, in $10^{24}$? Chiaramente no... E in $10^{-3}$? Nemmeno... Insomma, nella frazione c'è solo il numero $100$, quindi dove volete che sia il massimo se non in $x=100$..?" (da leggere con risatine perfide e irrisorie in corrispondenza dei puntini di sospensione)

Maledetti fisici! (cit.)
Rispondi