Geometria elementare.

Rette, triangoli, cerchi, poliedri, ...
Ceva
Messaggi: 57
Iscritto il: 01 gen 1970, 01:00
Località: tra la Transilvania e la California

Geometria elementare.

Messaggio da Ceva » 23 feb 2005, 21:56

1) Dimostrare che se i due segmenti $ AB $ e $ BC $ sono adiacenti e se $ BC $ è il triplo di $ AB $, indicati con $ M $ e con $ N $ rispettivamente i punti medi di $ AB $ e di $ BC $, il segmento $ MN $ è il doppio di $ AB $.


2) Dimostrare che le semirette bisettrici di un angolo convesso $ AOB $ e dell'angolo concavo $ AOB $ sono opposte.


EDIT: modifica errore testo problemino 1.
Ultima modifica di Ceva il 23 feb 2005, 22:14, modificato 1 volta in totale.

Avatar utente
-_-
Messaggi: 5
Iscritto il: 23 feb 2005, 13:44

Re: Geometria elementare.

Messaggio da -_- » 23 feb 2005, 22:10

Ceva ha scritto:indicati con $ M $ e con $ N $ rispettivamente i punti di $ AB $ e di $ BC $
I punti medi dei segmenti $ AB $ e $ BC $

Ceva
Messaggi: 57
Iscritto il: 01 gen 1970, 01:00
Località: tra la Transilvania e la California

Messaggio da Ceva » 23 feb 2005, 22:13

sì beh sottinteso(quasi) ^^

Ceva
Messaggi: 57
Iscritto il: 01 gen 1970, 01:00
Località: tra la Transilvania e la California

Messaggio da Ceva » 24 feb 2005, 13:19

allora nessuno? 67 visite e nessuno che ha abbozzato uno stralcio di risposta.
Troppo facile e vi vergognate di rispondere?
Su, dai, impegnatevi!

lz2110
Messaggi: 55
Iscritto il: 01 gen 1970, 01:00

Re: Geometria elementare.

Messaggio da lz2110 » 24 feb 2005, 15:58

Ceva ha scritto:1) Dimostrare che se i due segmenti $ AB $ e $ BC $ sono adiacenti e se $ BC $ è il triplo di $ AB $, indicati con $ M $ e con $ N $ rispettivamente i punti medi di $ AB $ e di $ BC $, il segmento $ MN $ è il doppio di $ AB $.
insomma non è troppo difficile no? riesco perfino a capirlo!!
dunque...

BC=3AB e BN=1/2BC quindi BN=3/2AB, poi ho che MB=1/2AB
quindi MN=MB+BN=1/2AB+3/2AB=2AB...

non pretendo troppo, almeno ho scritto qualcosa di sensato?

Avatar utente
Melkon
Messaggi: 259
Iscritto il: 01 gen 1970, 01:00
Località: Ferrara

Re: Geometria elementare.

Messaggio da Melkon » 24 feb 2005, 16:06

Ceva ha scritto:1) Dimostrare che se i due segmenti $ AB $ e $ BC $ sono adiacenti e se $ BC $ è il triplo di $ AB $, indicati con $ M $ e con $ N $ rispettivamente i punti medi di $ AB $ e di $ BC $, il segmento $ MN $ è il doppio di $ AB $.


2) Dimostrare che le semirette bisettrici di un angolo convesso $ AOB $ e dell'angolo concavo $ AOB $ sono opposte.

vabbè dato che non risponde nessuno, ci penso io.

1) mettiamo AC su una retta orientata, con A su 0, B su x e C su 4x. Allora M sta su x/2 e N sta su (5/2)x e MN vale 2x

2) AOB convesso più AOB concavo valgono un angolo piatto, le bisettrici dividono gli angoli a metà, quindi formano un angolo retto

prima o poi imparerò anche ad usare $ \LaTeX $
"Bisogna vivere come si pensa, se no, prima o poi, ci si troverà a pensare come si è vissuto"
Paul Borget

Avatar utente
Marco
Site Admin
Messaggi: 1331
Iscritto il: 01 gen 1970, 01:00
Località: IMO '93

Re: Geometria elementare.

Messaggio da Marco » 24 feb 2005, 16:26

Melkon ha scritto:
Ceva ha scritto:2) Dimostrare che le semirette bisettrici di un angolo convesso $ AOB $ e dell'angolo concavo $ AOB $ sono opposte.
2) AOB convesso più AOB concavo valgono un angolo piatto, le bisettrici dividono gli angoli a metà, quindi formano un angolo retto
Sicuro sicuro sicuro sicuro?

Avatar utente
Sisifo
Messaggi: 604
Iscritto il: 01 gen 1970, 01:00
Località: Scorzè (VE)/Pisa

Messaggio da Sisifo » 24 feb 2005, 16:29

In effetti, i due angoli formano un angolo giro! Avevo letto male anch'io il testo :oops: ... Il ragionamento comunque tiene...
"Non è certo che tutto sia incerto"(B. Pascal)
Membro dell'associazione "Matematici per la messa al bando del sudoku" fondata da fph

Ceva
Messaggi: 57
Iscritto il: 01 gen 1970, 01:00
Località: tra la Transilvania e la California

Messaggio da Ceva » 24 feb 2005, 17:46

Sisifo ha scritto:In effetti, i due angoli formano un angolo giro! Avevo letto male anch'io il testo :oops: ... Il ragionamento comunque tiene...

Beh, non è così banale.

MindFlyer

Messaggio da MindFlyer » 24 feb 2005, 18:29

Intervengo per ricordare di dare titoli più espressivi ai nuovi thread.
Questa sezione è dedicata alla Geometria elementare, dunque sarebbero da evitare titoli come "Geometria elementare".
Spero di non essere intervenuto in modo troppo invasivo, e vi auguro nuovamente buon problem solving!

Avatar utente
Melkon
Messaggi: 259
Iscritto il: 01 gen 1970, 01:00
Località: Ferrara

Messaggio da Melkon » 24 feb 2005, 18:31

ah ops... avevo letto male il testo in effetti, pensavo alle bisettrici di due rette tangenti e avevo interpretato opposte con perpendicolari... Tracciamo la bisettrice di AOB concavo e la sua perpendicolare per O. Chiamiamo due punti di questa perpendicolare opposti tra loro C e D. COB = AOD (angoli) per differenza di angoli congruenti, quindi la bisettrice del semipiano "vuoto" diviso dalla retta COD è anche bisettrice di AOB convesso, ma questa è opposta all'altra bisettrice perché è perpendicolare per O.

Adesso dovrebbe andare bene. C'è un modo più facile per dimostrarlo?
"Bisogna vivere come si pensa, se no, prima o poi, ci si troverà a pensare come si è vissuto"
Paul Borget

Ceva
Messaggi: 57
Iscritto il: 01 gen 1970, 01:00
Località: tra la Transilvania e la California

Messaggio da Ceva » 24 feb 2005, 20:29

Propongo la mia: l'angolo convesso $ aOb $ e l'angolo concavo $ aOb $ sono esplementari e, percio', la loro somma è un angolo giro.

Consideriamo una retta orizzontale (che rappresenti appunto le bisettrici dei due angoli e disegniamo i due angoli); l'uno concavo, l'altro convesso (per costruzione).

Essendo $ AOb $ la metà di $ aOb $ e $ BOb $ la metà dell'angolo concavo $ aOb $, i due angoli $ AOb $ e $ BOb $ sono supplementari. Di conseguenza l'angolo $ BOA $ è piatto, e quindi i suoi lati $ AO $ e $ OB $ sono semirette opposte, cvd.

Metto anche il disegnino che ho abbozzato se no nn si capisce un tubo( p.s stare attenti alle lettere maiuscole e minuscole dei lati degli angoli!)


Immagine




'ao

pps
Messaggi: 104
Iscritto il: 01 gen 1970, 01:00
Località: un posto tranquillo

Messaggio da pps » 24 feb 2005, 21:55

che ciccio il disegno!

Allora, iniziamo con le circonferenze:
Dimostrare che la maggiore e la minore corda, che si possono condurre per un medesimo punto di un cerchio, sono perpendicolari fra di loro.

:?: non sono sicuro che si tratti di un problema elementare. Certo, è banale, ma richiede comunque una minima conoscenza di circonferenze e cerchi. In ogni caso...

Avatar utente
Samu
Messaggi: 17
Iscritto il: 23 feb 2005, 14:48
Località: Pontedera

Messaggio da Samu » 25 feb 2005, 18:06

Azzardo una risposta: la corda maggiore è il diametro, mentre la corda minore è la retta tangente. Con il mio bagaglio minimo in fatto di geometria mi verrebbe da dire che la tangente e il diametro passanti per un medesimo punto della circonferenza sono perpendicolari per definizione... Un po' errato, vero?

Avatar utente
Marco
Site Admin
Messaggi: 1331
Iscritto il: 01 gen 1970, 01:00
Località: IMO '93

Messaggio da Marco » 25 feb 2005, 18:19

Il fatto che diametro e tangente per un punto su una circonferenza siano ortogonali è un fatto vero, che non occorre dimostrare.

Attento: il problema ti chiede per un punto di un cerchio = sulla crf o nella regione di piano delimitata dalla crf. E' uno dei rarissimi casi in cui il termine cerchio significa proprio cerchio e non circonferenza...

Rispondi