Semplice e carino
- 
				RiccardoKelso
Semplice e carino
Date $n$ paia di guanti, si distribuiscono casualmente a $n$ persone $2$ guanti a testa. Qual è la probabilità che ognuno riceva un guanto sinistro e uno destro?
			
			
									
						
										
						Re: Semplice e carino
Testo nascosto: 
					Ultima modifica di Vinci il 23 ott 2017, 17:14, modificato 1 volta in totale.
									
			
						
										
						- 
				RiccardoKelso
Re: Semplice e carino
Attento, c'è qualche configurazione favorevole in più. Per il resto fila tutto liscio
			
			
									
						
										
						Re: Semplice e carino
Oooooooops... modifico subeeto
			
			
									
						
										
						Re: Semplice e carino
Ciao,
Io ho trovato questa soluzione:
$ \displaystyle\prod_{k=1}^n \frac {k}{2k-1} $
In pratica è sufficiente considerare che alla prima persona dò prima un guanto qualsiasi, poi ne devo dare uno diverso, che posso scegliere tra gli $n$ rimasti di tipo "diverso" su $2n-1$ totali, poi vado avanti fino all'ultima persona moltiplicando tutte le probabilità che ognuno ha di trovare guanti diversi.
			
			
									
						
										
						Io ho trovato questa soluzione:
$ \displaystyle\prod_{k=1}^n \frac {k}{2k-1} $
In pratica è sufficiente considerare che alla prima persona dò prima un guanto qualsiasi, poi ne devo dare uno diverso, che posso scegliere tra gli $n$ rimasti di tipo "diverso" su $2n-1$ totali, poi vado avanti fino all'ultima persona moltiplicando tutte le probabilità che ognuno ha di trovare guanti diversi.
- 
				RiccardoKelso
Re: Semplice e carino
Ed è giusta, prova a trovare una formula "chiusa" per esprimere quella quantità!
			
			
									
						
										
						Re: Semplice e carino
Potrei scriverla come $  \frac {n!} {(2n-1)!!}  $
Non mi sembra ci siano altri modi per scriverla. Per chi non lo sapesse il doppio punto esclamativo indica il semifattoriale, cioè, in questo caso, il prodotto di tutti i numeri dispari da $1$ a $2n-1$.
			
			
									
						
										
						Non mi sembra ci siano altri modi per scriverla. Per chi non lo sapesse il doppio punto esclamativo indica il semifattoriale, cioè, in questo caso, il prodotto di tutti i numeri dispari da $1$ a $2n-1$.
- 
				RiccardoKelso
Re: Semplice e carino
Il semifattoriale può essere scritto combinando opportunamente fattorali e potenze, esplicito come in spoiler
			
			
									
						
										
						Testo nascosto: 
Re: Semplice e carino
Provo a postare anche la mia soluzione sperando che sia giusta.....
Chiamando S un guanto sinistro e D un guanto che calza alla destra mi immagino come Vinci di mettere le persone in fila, le configurazioni giuste ce l'ho quando ogni persona riceve SD o DS quindi ho $2^n$ configurazioni corrette. Il totale delle configurazione lo ottengo anagrammando DD...DSS.......S dove D ed S compaiono $n$ volte ed equivale a $\binom{2n}{n}$. Quindi la probabilità cercata è $\frac{2^n}{\binom{2n}{n}}$
			
			
									
						
										
						Chiamando S un guanto sinistro e D un guanto che calza alla destra mi immagino come Vinci di mettere le persone in fila, le configurazioni giuste ce l'ho quando ogni persona riceve SD o DS quindi ho $2^n$ configurazioni corrette. Il totale delle configurazione lo ottengo anagrammando DD...DSS.......S dove D ed S compaiono $n$ volte ed equivale a $\binom{2n}{n}$. Quindi la probabilità cercata è $\frac{2^n}{\binom{2n}{n}}$
