Quadrati e diagonali

Conteggi, probabilità, invarianti, logica, matematizzazione, ...
Rispondi
POSET
Messaggi: 7
Iscritto il: 10 giu 2020, 16:48

Quadrati e diagonali

Messaggio da POSET » 26 mar 2021, 15:21

Stabilire per quali $n\in\mathbb{N}$ e' possibile trovare una funzione $f\colon S\times n\to S$, dove $n=\{0,\dots,n-1\}$ e $S=\{x_0,\dots,x_{n-1}\}$ qualsiasi, tale per cui
(i) $f(x,0)=x$ per ogni $x\in S$;
(ii) se per qualche $y\in S$ e $i\in n$ si ha che $f(y,i)=x$, allora necessariamente $f(x,i)=y$;
(iii) la restrizione $f\colon \{x\}\times n\to S$ e' biunivoca per ogni $x\in S$.

Rispondi