Metodo di Cartesio

Analisi, algebra lineare, topologia, gruppi, anelli, campi, ...
SoN_NYO
Messaggi: 373
Iscritto il: 01 gen 1970, 01:00
Località: Roma

Metodo di Cartesio

Messaggio da SoN_NYO » 08 mar 2005, 17:30

Visto che nn l'abbiamo mai fatto, ora che sono in quinto mi si è posto il problema di trovare il numero di soluzioni reali di un equazione xe^x+xe^(-x)+2=0. Il prof. ci ha detto il nome del metodo ( ma nn ce lo vuole spiegare!) .......ora non è che tra di voi c'è 1 anima buona disposta a spiegarmi questo metodo?? Grazie mille!

fph
Site Admin
Messaggi: 3659
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Re: Metodo di Cartesio

Messaggio da fph » 08 mar 2005, 19:28

SoN_NYO ha scritto:Visto che nn l'abbiamo mai fatto, ora che sono in quinto mi si è posto il problema di trovare il numero di soluzioni reali di un equazione xe^x+xe^(-x)+2=0. Il prof. ci ha detto il nome del metodo ( ma nn ce lo vuole spiegare!) .......ora non è che tra di voi c'è 1 anima buona disposta a spiegarmi questo metodo?? Grazie mille!
hmm... l'unica cosa che mi viene in mente sentendo "metodo di Cartesio" è la regola per "contare" le soluzioni positive e negative dei polinomi:

(IIRC) dato un polinomio $ \sum_{0 \le i \le n} a_i x^i $, con gli $ a_i $ diversi da zero, diciamo che ha una permanenza (per qualche $ i $) se $ a_i a_{i+1}>0 $ e una variazione se $ a_i a_{i+1}<0 $ (cioè, se $ a_i $ e $ a_{i+1} $ hanno lo stesso segno o segni diversi).
Allora, il numero di soluzioni positive è uguale al numero delle variazioni meno un multiplo di 2, e il numero di soluzioni negative e' uguale al numero delle permanenze meno un multiplo di 2

Pero' temo che non c'entri nulla, non vedo un modo di applicarlo all'equazione che hai proposto tu. Pero' con un po' di lavoro credo che lo si riesca ad applicare a equazioni del tipo e^x+e^{-x}+2=0 (senza la x)

spero di essere stato minimamente utile...
ciao,
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]

Avatar utente
FrancescoVeneziano
Site Admin
Messaggi: 601
Iscritto il: 01 gen 1970, 01:00
Località: Pisa
Contatta:

Messaggio da FrancescoVeneziano » 08 mar 2005, 21:17

Credo che in questo caso per "metodo di Cartesio" si intenda semplicemente la risoluzione grafica dell'equazione:

$ x(e^x+e^{-x})=-2 $
$ e^x+e^{-x}=\frac{-2}{x} $

Allora conoscendo i grafici dei termini a sinistra e a destra dell'uguale è facile vedere che l'equazione ha una sola soluzione.

Comunque non chiamare questo metodo "di Cartesio" come farebbero le persone che chiamano "relazione pitagorica" $ \sin^2\alpha +\cos^2\alpha=1 $ o "regola di Legendre-De Polignac" un'identità che non ha bisogno di nome, perché non è una denominazione "universalmente accettata" e rischi solo di non farti capire.

CaO
Wir müssen wissen. Wir werden wissen.

Avatar utente
HiTLeuLeR
Messaggi: 1874
Iscritto il: 01 gen 1970, 01:00
Località: Reggio di Calabria

Messaggio da HiTLeuLeR » 08 mar 2005, 22:04

FrancescoVeneziano ha scritto:Comunque non chiamare questo metodo "di Cartesio" come farebbero le persone che chiamano "relazione pitagorica" $ \sin^2\alpha +\cos^2\alpha=1 $ o "regola di Legendre-De Polignac" un'identità che non ha bisogno di nome, perché non è una denominazione "universalmente accettata" e rischi solo di non farti capire.
Questa m'era sfuggita, che sbadato!!! Ok, FrancescoVeneziano, vorrà dire che lasceremo sia tu a decidere quel ch'è necessario e quel che invece non lo è...

SoN_NYO
Messaggi: 373
Iscritto il: 01 gen 1970, 01:00
Località: Roma

Messaggio da SoN_NYO » 08 mar 2005, 22:14

Intanto grazie a tutti....... :oops: :oops: Comunque non si tratta della risoluzione grafica, in quanto il prof. ha parlato di 1 altro procedimento + rapido per calcolare il numero delle soluzioni. Io ho cercato 1 pò su internet, ma nn sono riuscito a trovare granchè, anche perchè non ho le idee molto chiare su cosa sto cercando ( il così detto " metodo di Cartesio").

Avatar utente
HiTLeuLeR
Messaggi: 1874
Iscritto il: 01 gen 1970, 01:00
Località: Reggio di Calabria

Messaggio da HiTLeuLeR » 08 mar 2005, 22:17

Caspita... E' intervenuta la censura? Boooh... Troppe parolacce, forse!?! Beh, allora ci riprovo, su! Perché non lasciamo che sia la comunità a giudicare se il messaggio è troppo volgare o meno? Certo, forse è un po' OT, ma non è nel mio stile tirarmi indietro, quando c'è da combattere per una giusta causa. Ovvìa, lasciate che risponda al buon Francesco, amati mods: diversamente potrebbe pure offendersi... :cry:

Segue il messaggio censurato (si direbbe perché troppo volgare, già già...):
HiTLeuLeR ha scritto:
FrancescoVeneziano ha scritto:Comunque non chiamare questo metodo "di Cartesio" come farebbero le persone che chiamano "relazione pitagorica" $ \sin^2\alpha +\cos^2\alpha=1 $ o "regola di Legendre-De Polignac" un'identità che non ha bisogno di nome, perché non è una denominazione "universalmente accettata" e rischi solo di non farti capire.
Interessante!? Com'è che ci vedo un malcelato riferimento al sottoscritto? Uff, se sono prevenuto... Un po' di storia della Matematica la insegnano, lì in Normale? Già, non c'è tempo, perdonami: c'è verosimilmente ben altro cui applicarsi! Ohibò, temo allora tocchi a me l'ingrato compito, umpfff... Orbene, nel formulare l'identità [click!] che ne porta (fra le tante?!) il nome, il sommo Legendre (povero lui!!!) ebbe, in verità, a dividere il proprio merito con un altro francesino tutto gaio: appunto, monsier De Polignac! Ed è strano che sia proprio tu a dire quel che dici, visto che fra gli altri a riferire di quest'identità, attribuendola congiuntamente ai nomi di Legendre e De Polignac, vi sarebbe (non mi credi, vero?!?) il carissimo David Santos, amico più tuo che mio, visto che sei TU l'ex-olimpionico, non IO... Saluti!!!
Fortuna che conservo sempre le bozze... :mrgreen:
Ultima modifica di HiTLeuLeR il 08 mar 2005, 22:34, modificato 3 volte in totale.

Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Boll » 08 mar 2005, 22:29

Ghgh, la forza dei mods contro le persone comuni... :D:D:D

MindFlyer

Messaggio da MindFlyer » 09 mar 2005, 06:04

Non so chi abbia cancellato il messaggio di HiTLeuLeR, ma so che non è stato FrancescoVeneziano (e nemmeno io...).
Comunque sia, mi scuso a nome dei mods per l'incidente.

Avatar utente
Marco
Site Admin
Messaggi: 1331
Iscritto il: 01 gen 1970, 01:00
Località: IMO '93

Messaggio da Marco » 09 mar 2005, 10:29

FrancescoVeneziano ha scritto:Comunque non chiamare questo metodo "di Cartesio" [...] rischi solo di non farti capire.
Beh, a drila tutta, sembra più un difetto del prof. di Son_nyo che non suo. Keine Ahnung su che cosa diavolo possa essere il metodo di cartesio...
[i:2epswnx1]già ambasciatore ufficiale di RM in Londra[/i:2epswnx1]
- - - - -
"Well, master, we're in a fix and no mistake."

Avatar utente
Catraga
Messaggi: 302
Iscritto il: 01 gen 1970, 01:00
Località: Trieste (Univ)

Soluzione

Messaggio da Catraga » 09 mar 2005, 10:45

Io penso che si debba dedurre dai grafici e dalle proprieta' delle funzioni....
e giacche' nessuno ha ancora postato la soluzione:

$ \begin{array}{rcl} x e^x + x e^{-x} + 2 & = & 0 \\ x \frac{e^x + e^{-x}}{2} & = & -1 \\ \frac{e^x + e^{-x}}{2} & = & -\frac{1}{x} \\ \cosh x & = & -\frac{1}{x} \\ \end{array} $

La qual cosa ha ovviamente una sola soluzione:
1) $ x \geq 0 $, il coseno iperbolico e' positivo, mentre il secondo membro e' negativo o non esiste: ovvero nessuna soluzione.

2) $ x < 0 $, il coseno iperbolico e' decrescente, l'iperbole crescente (entrambe iniettive), e per il teroema degli zeri per funzioni continue (spero che questa denominazione si universalmente accettata :wink: ) la funzione:

$ f(x) = \cosh x + \frac{1}{x} $

ammette uno zero.

P.S. comunque la relazione $ \sin^2 x + \cos^2 x = 0 $ io l'ho sempre sentita chiamare 'prima relazione fondamentale' per le funzioni trigonometriche.

Avatar utente
Marco
Site Admin
Messaggi: 1331
Iscritto il: 01 gen 1970, 01:00
Località: IMO '93

Re: Soluzione

Messaggio da Marco » 09 mar 2005, 11:15

Scusate, ma è troppo ghiotta, per resistere...
Catraga ha scritto:$ \sin^2 x + \cos^2 x = 0 $
Lol!! In questo modo dimostriamo che, essendo seno e coseno a valori reali, sono entrambi identicamente nulli. Quindi tutti i triangoli hanno area 0 e non esistono cerchi con raggio positivo....

Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 09 mar 2005, 12:29

La risposta di fph sul teorema di Cartesio mi ha fornito (spero) la soluzione di un
mio vecchio post (che non ebbe a suo tempo seguito forse ..per la sua banalita')
Il quesito e' il seguente:
Dimostrare che se un polinomio ,ordinato e a coefficienti reali ,manca anche di un sol termine tra 2 suoi termini consecutivi e di egual segno allora esso ha almeno 2 radici complesse.
Per esempio il polinomio $ x^4+3x^2-4 $ ha 2 radici complesse perche'
tra i termini $ +x^4 e +3x^2 $ manca il termine in $ x^3 $.
Il polinomio $ x^5+4x^3+5x^2+7 $ ha 4 radici complesse (ed una reale).
Evidentemente cio' e' dovuto al fatto che ,per il teorema di Cartesio appunto,la
mancanza di quel termine fa perdere 2 variazioni o 2 permanenze ovvero
fa diminuire di 2 il numero delle radici positive o negative ( quindi reali) e fa aumentare di 2 il numero delle radici complesse.
Grazie fph!!

Avatar utente
Catraga
Messaggi: 302
Iscritto il: 01 gen 1970, 01:00
Località: Trieste (Univ)

Lol

Messaggio da Catraga » 09 mar 2005, 12:54

:lol: :lol: :lol:

Hai ragione Marco... che erroraccio....

Per Karl: l'esercizio tuo si risolve proprio con quella tecnica.

fph
Site Admin
Messaggi: 3659
Iscritto il: 01 gen 1970, 01:00
Località: in giro
Contatta:

Messaggio da fph » 09 mar 2005, 17:03

karl ha scritto:La risposta di fph sul teorema di Cartesio mi ha fornito (spero) la soluzione di un
mio vecchio post (che non ebbe a suo tempo seguito forse ..per la sua banalita')
ehm... non sono sicuro che la "regola dei segni di Cartesio" funzioni se ci sono termini nulli (anzi, sono certo che non funzioni: ad es. x^2-4 ha due radici reali, ma una sola "variazione" e zero "permanenze" se le intendi in quel senso).
Io se leggi bene ho enunciato la regola solo nel caso in cui gli a_i sono diversi da zero, e ora come ora non so cosa succeda se c'e' qualche a_i uguale a zero (forse si puo' fare un qualche ragionamento di continuita', si prendono i termini mancanti uguali a \epsilon e si fa tendere \epsilon a zero...).

Sorry :-)
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]

Avatar utente
karl
Messaggi: 926
Iscritto il: 01 gen 1970, 01:00

Messaggio da karl » 09 mar 2005, 21:07

@fph
Quello che dici puo' anche essere vero,noto pero' che l'esempio
da te fatto non rientra nel caso descritto perche' +x^2 e -4
non hanno lo stesso segno.
Se invece si considera il polinomio x^2+4 la regola funziona
perche' in ogni caso si perdono due variazioni o due permanenze
ed e' questo cio' che puo' convalidare l'esistenza di (almeno)
due radici complesse.

Rispondi