$ 1 \blacktriangleright \displaystyle \tan{\frac{A}{2}} \tan{\frac{B}{2}} + \tan{\frac{B}{2}} \tan{\frac{C}{2}} + \tan{\frac{C}{2}} \tan{\frac{A}{2}} =1 $
$ 2 \blacktriangleright \displaystyle \tan{\frac{A}{2}} \tan{\frac{B}{2}} \tan{\frac{C}{2}} \le \frac{\sqrt{3}}{9} $
$ 3 \blacktriangleright \displaystyle \tan{A} + \tan{B} + \tan{C} = \tan{A} \tan{B} \tan{C} $ con ABC non rettangolo
$ 4 \blacktriangleright \displaystyle \tan{A} \tan{B} \tan{C} \ge 3\sqrt{3} $ con ABC acutangolo
$ 5 \blacktriangleright \displaystyle \sin^2{\frac{A}{2}} + \sin^2{\frac{B}{2}} + \sin^2{\frac{C}{2}} + 2\sin{\frac{A}{2}} \sin{\frac{B}{2}} \sin{\frac{C}{2}} = 1 $
$ 6 \blacktriangleright \displaystyle \sin{\frac{A}{2}} \sin{\frac{B}{2}} \sin{\frac{C}{2}} \le \frac{1}{8} $
$ 7 \blacktriangleright \displaystyle \cos^2{\frac{A}{2}} + \cos^2{\frac{B}{2}} + \cos^2{\frac{C}{2}} \le \frac{9}{4} $
$ 8 \blacktriangleright \displaystyle \cos{\frac{A}{2}} \cos{\frac{B}{2}} \cos{\frac{C}{2}} \le \frac{3\sqrt{3}}{8} $
$ 9 \blacktriangleright \displaystyle \csc{\frac{A}{2}} + \csc{\frac{B}{2}} + \csc{\frac{C}{2}} \ge 6 $
$ 10 \blacktriangleright \displaystyle \sin{2A} + \sin{2B} + \sin{2C} = 4 \sin{A} \sin{B} \sin{C} $
$ 11 \blacktriangleright \displaystyle \sin^2{A} + \sin^2{B} + \sin^2{C} = 2 + 2 \cos{A} \cos{B} \cos{C} $
$ 12 \blacktriangleright \displaystyle \cos^2{A} + \cos^2{B} + \cos^2{C} + 2 \cos{A} \cos{B} \cos{C} = 1 $
$ 13 \blacktriangleright \displaystyle \frac{\sin{A} + \sin{B} + \sin{C}}{\sin{A} \sin{B} \sin{C}} = \frac{2R}{r} $
$ 14 \blacktriangleright \displaystyle \sin{\frac{A}{2}} \sin{\frac{B}{2}} \sin{\frac{C}{2}} = \frac{r}{4R} $
$ 15 \blacktriangleright \displaystyle a\cos{A} + b\cos{B} + c\cos{C} = \frac{abc}{2R^2} $
$ 16 \blacktriangleright \displaystyle \cos{\frac{A}{2}} \cos{\frac{B}{2}} \cos{\frac{C}{2}} = \frac{p}{4R} $
$ 17 \blacktriangleright \displaystyle p \le \frac{3\sqrt{3}}{2} R $
$ 18 \blacktriangleright \displaystyle \cos{A} + \cos{B} + \cos{C} = 1 + 4 \sin{\frac{A}{2}} \sin{\frac{B}{2}} \sin{\frac{C}{2}} $
$ 19 \blacktriangleright \displaystyle \cos{A} + \cos{B} + \cos{C} \le \frac{3}{2} $
$ 20 \blacktriangleright \displaystyle \cos{A} \cos{B} \cos{C} \le \frac{1}{8} $
$ 21 \blacktriangleright \displaystyle \sin{A} \sin{B} \sin{C} \le \frac{3\sqrt{3}}{8} $
$ 22 \blacktriangleright \displaystyle \sin{A} + \sin{B} + \sin{C} \le \frac{3\sqrt{3}}{2} $
$ 23 \blacktriangleright \displaystyle \cos^2{A} + \cos^2{B} + \cos^2{C} \ge \frac{3}{4} $
$ 24 \blacktriangleright \displaystyle \sin^2{A} + \sin^2{B} + \sin^2{C} \le \frac{9}{4} $
$ 25 \blacktriangleright \displaystyle \cos{2A} + \cos{2B} + \cos{2C} \ge - \frac{3}{2} $
$ 26 \blacktriangleright \displaystyle \sin{2A} + \sin{2B} + \sin{2C} \le \frac{3\sqrt{3}}{2} $
$ 27 \blacktriangleright \displaystyle \frac{a-b}{a+b} = \tan{\frac{A-B}{2}} \tan{\frac{C}{2}} $
$ 28 \blacktriangleright \displaystyle a^x\cos{A} + b^x\cos{B} + c^x\cos{C} \le \frac{1}{2} \left ( a^x + b^x + c^x \right ) $ con x reale e non negativo
$ 29 \blacktriangleright \displaystyle \sin{\frac{3A}{2}} + \sin{\frac{3B}{2}} + \sin{\frac{3C}{2}} \le $$ \displaystyle \cos{\frac{A-B}{2}} + \cos{\frac{B-C}{2}} + \cos{\frac{C-A}{2}} $
Le seguenti valgono per ABC acutangolo:
$ 30 \blacktriangleright \displaystyle \sqrt{a^2b^2 - 4A^2} + \sqrt{b^2c^2 - 4A^2} + \sqrt{c^2a^2 - 4A^2} = \frac{a^2 + b^2 + c^2}{2} $
$ 31 \blacktriangleright \displaystyle \cot^3{A} + \cot^3{B} + \cot^3{C} + 6\cot{A}\cot{B}\cot{C} \ge $$ \displaystyle \cot{A} + \cot{B} + \cot{C} $
$ 32 \blacktriangleright \displaystyle (\sin{2B} + \sin{2C})^2 \sin{A} + (\sin{2C} + \sin{2A})^2 \sin{B} + $$ \displaystyle (\sin{2A} + \sin{2B})^2 \sin{C} \le 12 \sin{A} \sin{B} \sin{C} $
$ 33 \blacktriangleright \displaystyle \left ( \frac{\cos{A}}{\cos{B}} \right )^2 + \left ( \frac{\cos{B}}{\cos{C}} \right )^2 + \left ( \frac{\cos{C}}{\cos{A}} \right )^2 + 8 \cos{A}\cos{B}\cos{C} \ge 4 $
non c'è un ordine particolare, alcune implicano altre abbastanza facilmente, comunque consiglio di non partire dalla fine
