Relazione A2

Leonardo Patimo

Innanzitutto possiamo semplificare le ipotesi ponendo $a_{n+1} = 1 - \sum_{i=1}^{n} a_i$.

Ora la tesi è:

$$\prod_{i=1}^{n+1} \frac{a_i}{1 - a_i} \le \frac{1}{n^{n+1}}$$

A questo punto possiamo seguire tre strade:

Approccio 1: Per AM-GM

$$\frac{a_i}{1 - a_i} = \frac{a_i}{\sum_{j \neq i} a_j} \le \frac{a_i}{n \sqrt[n]{\prod_{j \neq i} a_i}}$$

$$\prod_{i=1}^{n+1} \frac{a_i}{1 - a_i} \le \prod_{i=1}^{n+1} \frac{a_i}{n \sqrt[n]{\prod_{j \ne i} a_i}} = \frac{1}{n^{n+1}}$$

Approccio 2:

Se esiste i tale che $a_i > \frac{1}{n+1}$, allora esiste j tale che $a_j < \frac{1}{n+1}$. Sostituiamo a_i con $\frac{1}{n+1}$ e a_j con $a_i + a_j - \frac{1}{n+1}$. Così facendo le ipotesi rimangono rispettate mentre il LHS si incrementa perchè:

$$\frac{a_i}{1 - a_i} \frac{a_j}{1 - a_j} < \frac{\frac{1}{n+1}}{\frac{n}{n+1}} \frac{a_i + a_j - \frac{1}{n+1}}{\frac{n+2}{n+1} - a_i - a_j} \Leftrightarrow$$

$$(a_i + a_j - 1)(a_i - \frac{1}{n+1})(a_j - \frac{1}{n+1}) > 0$$

Quindi il massimo è quando $\forall i : a_i = \frac{1}{n+1}$.

Approccio 3:

La disuguaglianza è equivalente a

$$\sum_{i=1}^{n+1} \log \frac{a_i}{1 - a_i} \le \log \frac{1}{n^{n+1}}$$

La funzione $f(x) = \log \frac{x}{1-x}$ è concava in $\left[0; \frac{1}{2}\right]$ (si veda la derivata seconda) Se tutti gli a_i sono minori di $\frac{1}{2}$ si può quindi applicare Jensen e giungere direttamente alla tesi.

Altrimenti se esiste $a_i \geq \frac{1}{2}$, applicando Jensen sugli altri n termini (di cui poniamo la somma s) si ha:

$$\frac{s^{n-1}(1-s)}{(n-s)^n} \le \frac{1}{n^{n+1}}$$

Sfruttando il fatto che $s(1-s) < \frac{1}{4}$ e che $s \leq \frac{1}{2}$ si può concludere con la disuguaglianza di Bernoulli.