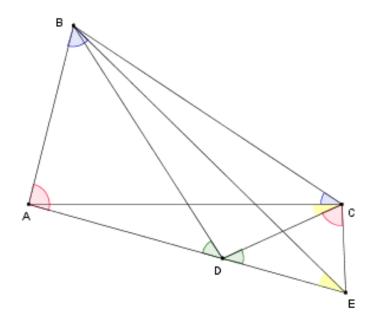
Testo del problema G3

Sia ABC un triangolo acutangolo. Sia E un punto del piano tale che E e B stanno in semipiani opposti rispetto ad AC. Sia D un punto interno al segmento AE. Si sa che $\widehat{ADB} = \widehat{CDE}$, $\widehat{BAD} = \widehat{ECD}$, $\widehat{ACB} = \widehat{EBA}$. Dimostrare che E appartiene alla retta BC. \square

Soluzione



L'idea fondamentale è quella di dimostrare che B,C,E sono allineati dimostrando che $\widehat{BCE}=\pi.$

Il modo più semplice per farlo è dimostrare per angle chasing che \widehat{BCE} è uguale alla somma degli angoli del triangolo $\triangle ABE$.

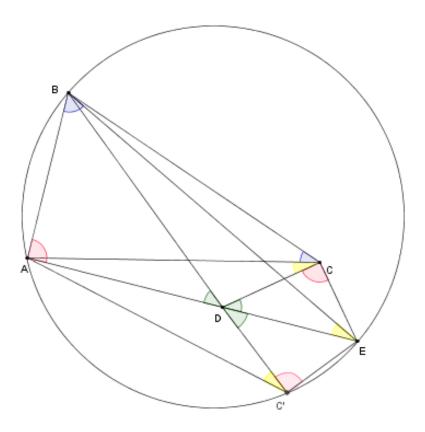
L'unica congruenza mancante dalle ipotesi è $\widehat{BED} = \widehat{ACD}$; si può dimostrare in maniera semplice in due modi:

• Dalle ipotesi $\widehat{ADB}=\widehat{CDE}$ e $\widehat{BAD}=\widehat{ECD}$ segue che $\triangle ADB\sim\triangle CDE$, e in particolare

 $\frac{BD}{ED} = \frac{AD}{CD}$

Da questa proporzione e dalla congruenza $\widehat{BDE} = \widehat{ADC}$ si ha che $\triangle BDE \sim \triangle ADC$, da cui $\widehat{BED} = \widehat{ACD}$ e quindi la tesi.

ullet Costruiamo il punto C', simmetrico di C rispetto ad AE.



Abbiamo che $\widehat{ADB} = \widehat{CDE} = \widehat{C'DE}$ per ipotesi e simmetria, dunque B, D, C' sono allineati. Inoltre $\widehat{BAD} = \widehat{ECD} = \widehat{EC'D}$, quindi BACE' è ciclico, poichè i due angoli \widehat{BAD} e $\widehat{EC'D}$ giacciono nello stesso semipiano rispetto a BE. Perciò $\widehat{AEB} = \widehat{AC'B} = \widehat{ACD}$, da cui segue la tesi.