La ricerca ha trovato 335 risultati
- 23 lug 2018, 18:12
- Forum: Olimpiadi della matematica
- Argomento: Chi può leggere le Shortlist?
- Risposte: 7
- Visite : 6638
Chi può leggere le Shortlist?
Il mondo dell'università è ormai alle porte per quelli del mio anno e per alcuni di noi (tra i quali spero di esserci anch'io) significherà anche passare al lato oscuro delle olimpiadi; il che significa collaborare in molti modi - chi è pro può anche proporre problemi - ma soprattutto, e questo è il...
- 23 lug 2018, 13:45
- Forum: Combinatoria
- Argomento: C9 PreIMO 2017
- Risposte: 2
- Visite : 4629
Re: C9 PreIMO 2017
Non ho mai visto la soluzione completa, ma scriverò quel paio di hint che mi ricordo. Che relazione c'è tra $2016$ e $45$? Se non ricordo male si usava che $45=\lfloor\sqrt{2016}\rfloor+1$. Fissa il numero di distanze distinte a $44$: quanti punti ci possono essere al massimo? Per fare il punto sopr...
- 23 lug 2018, 13:39
- Forum: Olimpiadi della matematica
- Argomento: Senior 2018
- Risposte: 205
- Visite : 132387
Re: Senior 2018
1 settembre.danfed_252 ha scritto: ↑23 lug 2018, 11:43 Qualcuno saprebbe dirmi una data entro la quale con certezza avremo l'elenco degli ammessi (ho bisogno di saperlo per problemi logistici).
Evitate, se potete, di rispondere 2 settembre
Risposta seria: circa la settimana prima dello stage.
Le date esatte sono utopie.
- 20 lug 2018, 15:53
- Forum: Teoria dei Numeri
- Argomento: Parti$\mathbb{Z^+}$ioni 2
- Risposte: 2
- Visite : 2317
Re: Parti$\mathbb{Z^+}$ioni 2
Alla faccia della formalità...
Tralasciando questo, è giusta.
Tralasciando questo, è giusta.
- 20 lug 2018, 14:42
- Forum: Teoria dei Numeri
- Argomento: Parti$\mathbb{Z^+}$ioni 2
- Risposte: 2
- Visite : 2317
Parti$\mathbb{Z^+}$ioni 2
Direi assai facile, ma buffo. Siano $p_n$ l'$n$-esimo numero primo e $\pi(n)$ il numero di primi minori o uguali di $n$ con $n \ge 1$. Mostrare che le due sequenze $\{n+\pi(n-1)\}_{n \ge 1}$ e $\{n+p_n\}_{n \ge 1}$ partizionano $\mathbb{Z^+}$.
EDIT: $\pi(0)=0$.
EDIT: $\pi(0)=0$.
- 20 lug 2018, 11:55
- Forum: Glossario e teoria di base
- Argomento: Cose a caso un po' analitiche
- Risposte: 1
- Visite : 7902
Re: Cose a caso un po' analitiche
Eccoci qua! Verranno date per ovvie alcune cose basilari sui limiti e sulle serie. Sotto, $n$ indica sempre un intero non negativo, e $n=0$ solo in casi particolari ben definiti (si spera). Il fattaccio. Sia $S \subseteq \mathbb{Z^+}$ e sia $\displaystyle f(n)=|S \cap [1, n]|=\sum_{s \in S, \\ s \le...
- 19 lug 2018, 22:03
- Forum: Teoria dei Numeri
- Argomento: Parti$\mathbb{Z}$ioni
- Risposte: 6
- Visite : 3967
Re: Parti$\mathbb{Z}$ioni
Comunque adesso devi dimostrare che effettivamente $3 \mid p'+q'$.
Ci sta che volessi intendere di fare qualcosa del genere quando dicevi che:
Ci sta che volessi intendere di fare qualcosa del genere quando dicevi che:
ma ti dispiacerebbe essere più esplicito?
- 19 lug 2018, 22:00
- Forum: Teoria dei Numeri
- Argomento: Parti$\mathbb{Z}$ioni
- Risposte: 6
- Visite : 3967
Re: Parti$\mathbb{Z}$ioni
Sì, ora dovrebbe andare! :D Io ho caratterizzato $p$ e $q$ diversamente, ma in realtà dovrebbe venire la stessa cosa, ti scrivo quello che ho fatto per un doublecheck (dovrebbe essere una diversa formulazione per indicare le stesse coppie che indichi tu): $v_3(p+q)>v_3(p)=v_3(q)$ (alla fine tutto qu...
- 19 lug 2018, 21:20
- Forum: Discorsi da birreria
- Argomento: Problema più difficile
- Risposte: 0
- Visite : 8199
Problema più difficile
Qual è il problema (olimpico) che ritenete il più difficile tra quelli che avete risolto , in gara e/o a casa? Ovviamente con difficile intendo che vi ha fatto ragionare tanto e a lungo per trovare un'idea risolutiva abbastanza complessa, quindi ad esempio non conta un IMOSL G8 se l'avete trovato di...
- 19 lug 2018, 20:29
- Forum: Glossario e teoria di base
- Argomento: Cose a caso un po' analitiche
- Risposte: 1
- Visite : 7902
Cose a caso un po' analitiche
NB: la domanda potrebbe andare anche in MNE, ma essendo più un dubbio teorico che un vero e proprio problema lo metto qui. C'è qualche legame tra la densità asintotica di un sottoinsieme degli interi positivi e la divergenza/convergenza della serie degli inversi degli elementi di tale sottoinsieme? ...
- 19 lug 2018, 16:24
- Forum: Teoria dei Numeri
- Argomento: Parti$\mathbb{Z}$ioni
- Risposte: 6
- Visite : 3967
Re: Parti$\mathbb{Z}$ioni
Il ragionamento è giusto, solo che ad esempio $(p, q)=(3, 6)$ funziona benissimo - in generale, non puoi scartare a priori $p \equiv q \equiv 0 \pmod{3}$. Manca qualcosa in più, anche se ci sei molto vicino.
- 18 lug 2018, 22:16
- Forum: Teoria dei Numeri
- Argomento: Parti$\mathbb{Z}$ioni
- Risposte: 6
- Visite : 3967
Parti$\mathbb{Z}$ioni
È un po' che non postavo un bel problema e questo che ho provato a fare oggi mi sembrava carino, anche se forse molti lo conoscono già (in qual caso, vietato ucciderlo) e potrebbe essere già passato, ma vabbè. Determinare tutte le coppie di interi positivi $(p, q)$ per cui è possibile partizionare $...
- 21 giu 2018, 20:30
- Forum: Olimpiadi della matematica
- Argomento: Senior 2018
- Risposte: 205
- Visite : 132387
Re: Senior 2018
Secondo me no!
Bene, sono rientrato nel forum da non so più neanche quando è stata l'ultima volta e solo per dirti questo...
- 02 mar 2018, 21:32
- Forum: Combinatoria
- Argomento: Le tasche piene di sassi e i sacchetti pieni di palline
- Risposte: 2
- Visite : 3601
Re: Le tasche piene di sassi e i sacchetti pieni di palline
Per distrarmi dal fallimento facilmente evitabile della gara a squadre ho deciso di risolvere questo problema. Supponiamo per assurdo che ce ne siano almeno due diversi. Intanto, chiamando $a_i$ il numero di palline nell'$i$-esimo sacchetto, siccome, detta $S$ la somma di tutti, $S-a_i$ deve essere ...
- 20 feb 2018, 15:19
- Forum: Combinatoria
- Argomento: Curse of the Labyrinth
- Risposte: 7
- Visite : 6577
Re: Curse of the Labyrinth
Allora, intanto è giusta, poi un altro metodo è dimostrare che il grafo che ha come vertici le stanze, le quali sono collegate da un arco sse sono adiacenti e non c'è un muro, è un albero.