Ognuno dei 300 soldati dell'esercito di Spartin ha un numero scritto sullo scudo , questo numero è pari al numero di zeri con cui termina n! con n da 1 a 300
Quindi ad esempio l'ultimo soldato ovvero il 300esimo ha sullo scudo 74 perchè 300! termina con 74 zeri. Sugli scudi degli Spartiniani però non compaiono tutti i numeri naturali da 0 a 74 , mane mancano alcuni
Qual è la somma di tutti i numeri che compaiono sugli scudi , ognuno contato una sola volta ?
Beh in realtà il formulozzo qua è abbastanza inutile...
In pratica, tu vuoi capire quanti 5 ci sono in un fattoriale; bene, questo è abbastanza semplice, perché il fattoriale è un prodotto e 5 è primo... quand'è che da $(n-1)! $ a $ n! $ guadagno almeno un fattore 5? E quanti ne guadagno esattamente?
Detto questo, ti accorgi che in realtà ci sono quasi tutti... quindi vuoi cercare dove sono i "salti" da almeno 2... e boh, qua si può fare praticamente a mano volendo
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)