Inviato: 02 giu 2008, 18:40
.......ebbene?SkZ ha scritto:consideriamo solo numeri interi e positivi, tanto non si perde di generalita'
se $ $(x,y,z)$ $ e' sol di $ $x^2+y^2+z^2=2xyz$ $, allora e' una terna di numeri pari $ $(x,y,z)=2(a,b,c)$ $, con $ $(a,b,c)$ $ sol di $ $a^2+b^2+c^2=4abc$ $, che e' una terna di numeri pari $ $(a,b,c)=2(l,m,n)$ $, con $ $(l,m,n)$ $ sol di $ $l^2+m^2+n^2=8abc$ $, che e' una terna di numeri pari ...