Magari sto sparando una cavolata, c'entra qualcosa il principio di inclusione-esclusione?
Re: punti privati su pianeti
Inviato: 03 gen 2011, 19:23
da Nabir Albar
Testo nascosto:
Prendo una nuova sfera di riferimento (sempre con raggio $r$) e considero un pezzo infinitesimo (quindi piatto) della sua superficie. Chiamo $\vec v$ il vettore che va da lui al centro della sfera. Posso traslarlo in modo da collocarlo sulla superficie privata di un pianeta (se esce un po' traslo solo il pezzo che sta dentro ), in modo che aggiungendo $\vec v$ alla nuova posizione si finisca nel centro del pianeta. Per trovare il pianeta giusto, prendo il piano parallelo alla superficie infinitesima più vicino ai pianeti e tale che tutti i pianeti siano dalla stessa parte rispetto a lui (la parte indicata da $\vec v$). Questo tange un pianeta (se ne tange più di uno lascio perdere questo pezzo di superficie), che è quello che cercavo. La superficie traslata è sicuramente privata. È facile vedere che se l'avessi incollata su un altro pianeta non sarebbe stata privata. Inoltre la superficie che ho dovuto buttare via in questo procedimento tende a 0 se considero pezzi sempre più piccoli.
Re: punti privati su pianeti
Inviato: 06 gen 2011, 23:15
da ndp15
Nabir avrei numerosi dubbi riguardo la tua soluzione. Se vuoi li pongo (sono tanti però! ), ma forse faresti meglio a scriverla in maniera più chiara (almeno per me..) se riesci. Grazie!