Inviato: 01 gen 1970, 01:33
Il titolo di questa bellissima discussione mi ha ispirato:
<BR>Onde evitare che questi bei problemini (belli in quanto non sono stati tratti da manuali e sinora -in base alle mie conoscenze-non dispongono di una soluzione pubblicata)
<BR>li ripropongo confidando in una estesa partecipazione al tentativo di risolverli:
<BR>a)Dimostrare che n>=5 allora una scacchiera nxn è percorribile da un cavallo in modo tale che esso (muovendosi a L come il cavallo negli scacchi)
<BR>passi sopra ogni casella esattamente una volta.
<BR>b)Determinare gli (s,t) per i quali una scacchiera rettangolare di lati s,t è percorribile dal cavallo in modo che esso passi una sola volta su ogni casella.
<BR>c)Nell\' a) si numeri la scacchiera con i numeri da 1 a n^2 partendo da in alto a destra e poi procedendo a serpentina.Si determinino in funzione di \"n\" quanti sono i modi (le sequenze permutazioni l\' una dell\' altra con almeno due punti non fissi) in cui il cavallo può espletare la sua funzione.
<BR>d)Analogo per il b) solo in funzione di (s,t) questa volta.
<BR>P.S.:La formula in c) e d) non deve necessariamente essere chiusa.
<BR>Buon lavoro e rispondete numerosi!!
<BR>Salve!
<BR>(L\'a) ed il b)(anche se il b) un poco meno) risultano fattibili in modo piuttosto standard)
<BR>Luca Tassinari
<BR>
<BR>Onde evitare che questi bei problemini (belli in quanto non sono stati tratti da manuali e sinora -in base alle mie conoscenze-non dispongono di una soluzione pubblicata)
<BR>li ripropongo confidando in una estesa partecipazione al tentativo di risolverli:
<BR>a)Dimostrare che n>=5 allora una scacchiera nxn è percorribile da un cavallo in modo tale che esso (muovendosi a L come il cavallo negli scacchi)
<BR>passi sopra ogni casella esattamente una volta.
<BR>b)Determinare gli (s,t) per i quali una scacchiera rettangolare di lati s,t è percorribile dal cavallo in modo che esso passi una sola volta su ogni casella.
<BR>c)Nell\' a) si numeri la scacchiera con i numeri da 1 a n^2 partendo da in alto a destra e poi procedendo a serpentina.Si determinino in funzione di \"n\" quanti sono i modi (le sequenze permutazioni l\' una dell\' altra con almeno due punti non fissi) in cui il cavallo può espletare la sua funzione.
<BR>d)Analogo per il b) solo in funzione di (s,t) questa volta.
<BR>P.S.:La formula in c) e d) non deve necessariamente essere chiusa.
<BR>Buon lavoro e rispondete numerosi!!
<BR>Salve!
<BR>(L\'a) ed il b)(anche se il b) un poco meno) risultano fattibili in modo piuttosto standard)
<BR>Luca Tassinari
<BR>