Pagina 1 di 1

Mcd o divisori??

Inviato: 07 mar 2008, 22:28
da jordan
Sia $ n \in \mathbb{N} \text{ e } \delta(n):=\{m \in \mathbb{N}: m \mid n\} $. Sia $ W \subset \delta(n) \text{ e } a(n,W):=\{m\in \mathbb{N}: gcd(m.n) \in W\} $.

mostrare:

i) se $ n \mid n' $ allora $ a(n,W)=a(n',W') \text{ dove } W':=\{d \in \mathbb{N}: d \mid n' \text{ e } gcd(n,d)\in W\} $

ii) $ \mathbb{N} \setminus a(n,W)= a(n, \delta(n) \setminus W) $

iii) $ a(n,W) \cup a(n,W')= a(n, W\cup W') $

ps rispondere a tono :wink: