Proviamoci ... visto che non so più cosa si fa e non si fa a scuola, scrivo TUTTO.
Angoli
1) angoli tagliati da una trasversale su rette parallele
2) angoli interni di un poligono
3) angoli al centro e alla circonferenza
4) angoli tra corda e tangente
5) condizione di ciclicità di un quadrilatero
Congruenze e similitudini
1) 3 criteri di congruenza
2) 3 criteri di similitudine
3) casi speciali per i triangoli rettangoli
4) teorema di Talete
5) area e volume sotto le similitudini
Triangoli rettangoli
1) Pitagora
2) Euclide (I e II)
3) Definizione di seno, coseno e tangente (trigonometria del tri. rett.)
Circonferenza
1) Teorema delle corde
2) teorema delle secanti
3) teorema della secante e della tangente
oppure 1+2+3) Potenza di un punto rispetto alla circonferenza
4) asse radicale e centro radicale
5) teorema di tolomeo
Triangoli
1) Punti notevoli (bari, in, circo, orto)-centro
2) Retta di Eulero
3) Teorema di Ceva
4) Teorema di Menelao
5) Circonferenza di Feuerbach
6) Incentro ed excentri
7) Distanze tra punti notevoli (IO, OG)

Feuerbach tange cerchio inscritto ed exscritti.
9) Punti di Spieker, Nagel, Gergonne, Lemoine
10) Coniugato isogonale
11) e molto altro
Trasformazioni del piano
1) proprietà delle isometrie
2) proprietà delle similitudini
3) proprietà delle affinità
4) l'inversione circolare
5) luoghi geometrici tramite trasformazioni del piano
Geometria Proiettiva
1) Teorema di Desargues
2) Teorema di Pascal
3) Teorema di Brianchon
4) Birapporti
5) Poli e polari
6) Dualità
7) Proiettività
Trigonometria
1) Definizioni
2) Formule di somma e di moltiplicazione
3) Formule di bisezione
4) Quante più identità trigonometriche puoi
5) Risoluzione dei triangoli
6) Formule sui quadrilateri ciclici e non
Vettori
1) Definizione
2) Somma di vettori
3) Combinazione convessa di due e di tre vettori
4) Scrittura di punti notevoli del triangolo
5) Norma e prodotto scalare per il calcolo delle distanze e degli angoli
6) Origine nel circocentro: formule comode.
7) Prodotto vettore e area
Numeri complessi
1) Scrittura delle similitudini con i numeri complessi
2) Radici dell'unità e rotazioni
3) Coniugio e riflessione
4) Inverso e inversione circolare
5) Numeri complessi come vettori
Coordinate
A) Coordinate cartesiane
A1) Luoghi geometrici
A2) Trasformazioni
B) Coordinate proiettive
B1) Rette e coniche
B2) Proiettività
B3) Sistema di riferimento proiettivo
B4) Dualità in coordinate
B5) Polarità in coordinate
C) Coordinate trilineari
C1) Corrispondenza con le proiettive
C2) Calcolo per punti notevoli
C3) Coniche notevoli
C4) Coniugato isogonale
D) Coordinate baricentriche
D1) Combinazione convessa di tre vettori
D2) Legame con le trilineari
D3) Calcolo delle aree
Ovviamente c'è molta altra roba tra cui una serie di fatterelli di per se interessanti ma che non sono teoria vera e propria che vanno saputi e ricordati, per averli pronti da usare in caso di necessità.
Ho dimenticato qualcosa?