Pagina 1 di 1

sequenza un pò ostica (per me)

Inviato: 18 nov 2008, 16:14
da fricchettone
1, 4, 34, .....

qual è il 4 numero e perchè?


4 possibili soluzioni

A)64 B)184 C) 2314 D)214 , una sola è giusta (così dicono)


Intanto buonasera a tutti!

Inviato: 18 nov 2008, 17:50
da carlodigif
Fai il quadrato di 34, prendi il successivo e fai il doppio, ed il 4° numero è 2314...
au au

Inviato: 18 nov 2008, 19:41
da Gatto
A prima occhiata avrei detto la successione era:

$ P(0) = 1 $

$ P(n) = P(n-1) + 3 \cdot 10^{n-1} $

Peccato non c'era 334 tra le risposte :P

Inviato: 18 nov 2008, 22:48
da SkZ
dai test per il concorso ad archeologi

22, 33, 44, ...
(52, 132, 65, 147)

Inviato: 19 nov 2008, 06:07
da Cenerentola08
132...xk divisibile x 11...
o almeno credo sia ql la risp...

Inviato: 26 nov 2008, 18:07
da Federiko
beh io penso invece che tutte le risposte vadano bene....infatti se abbiamo la successione $ x_1=1 , x_2=4 , x_3=34 $ possimo scegliere un qualsiasi $ \lambda $ in modo che $ x_4=\lambda $ . Infatti basta considerare un polinomio di secondo grado $ y=ax^2+bx+c $ e imporre che per $ x=1 $ sia $ y=4 $ ; per $ x=4 $ sia $ y=34 $ e che per $ x=34 $ si abbia $ y=\lambda $. Per trovarlo basta risolvere il sistema
$ \begin{array} 1a+b+c=4 \\ 16a+4b+c=34 \\ 1156a+34b+c=\lambda \\ \end{array} $
Per esempio io potrei sostenere che $ x_4=64 $ infatti mi basta risolvere il sistema e trovare il polinomio..Questo vale anche per il tuo problema, SkZ, basta prendere analogamente il sistema $ \begin{array} +22^2{a}+22b+c=33 \\ 33^2{a}+33b+c=44 \\ 44^2{a}+4b+c=\lambda \\ \end{array} $

Inviato: 27 nov 2008, 21:10
da SkZ
proprio 132, sembra