a^(1/a) + b^(1/b) + c^(1/c) < 3
Inviato: 03 dic 2008, 14:44
Siano $ $a, b, c \in \mathbb{R^+}$ $ tali che $ $a+b+c = 3$ $.
Si dimostri che
$ \[ a^{\frac{1}{a}} + b^{\frac{1}{b}} + c^{\frac{1}{c}} \leq 3 \] $
$ $a^{\frac{3}{2a}} + b^{\frac{3}{2b}} + c^{\frac{3}{2c}} \leq 3$ $
Si dimostri che
$ \[ a^{\frac{1}{a}} + b^{\frac{1}{b}} + c^{\frac{1}{c}} \leq 3 \] $
$ $a^{\frac{3}{2a}} + b^{\frac{3}{2b}} + c^{\frac{3}{2c}} \leq 3$ $