Pagina 1 di 1

Problemino facile facile(secondo me)

Inviato: 24 set 2009, 18:47
da karlosson_sul_tetto
Mentre stavo giocherellando con un programma di costruzione di figure,mi è venuto il seguente problemino facile facile(secondo me perche per me hanno la stessa difficolta un problema più facile per voi e uno più difficile per voi,perchè non riesco a risolverli entrambi!):
Prendiamo un triangolo;inscriviamo in esso un cerchio,poi in questo cechio inscriviamo un esagono.
Prima domanda:di quanto è più grande il triangolo dell'esagono?
Poi inscriviamo nel esagono un cerchio,poi nel cerchio un triangolo.
Seconda domanda:di quanto l'esagono è più grande del triangolo più piccolo?
Terza domanda:di quanto il triangolo più grande è più grande di quello più piccolo?
Quarta (e più importante)domanda:se facciamo n volte la procedura,quale sarà la proporzione dall'più grande all'più piccolo?
Non so se questo problema è gia stato postato o e ancora più stupido(tipo la proporzione è il p greco o la sezione aurea),ma mi piace e vorrei sapere la soluzione.

Re: Problemino facile facile(secondo me)

Inviato: 24 set 2009, 18:56
da pak-man
karlosson_sul_tetto ha scritto:[...]poi in questo cechio inscriviamo un esagono[...]
Sbaglio o tra le ipotesi manca il fatto che sia regolare?

Inviato: 24 set 2009, 18:58
da karlosson_sul_tetto
Si,volevo dire che tutte le figure sono regolari.Scusatemi :oops:

Inviato: 24 set 2009, 19:37
da Maioc92
un problema carino :wink:
credo sia sul livello giochi di archimede quindi magari lasciatelo a uno dei tanti nuovi arrivati

Inviato: 24 set 2009, 19:47
da karlosson_sul_tetto
E pensare che l'ho inventato ma non ancora risolto! 8) :lol:

Inviato: 09 ott 2009, 14:40
da karlosson_sul_tetto
Dai,dai,non lasciatelo cosi questo problema facile e idiota! :D

Inviato: 13 ott 2009, 16:45
da Iuppiter
Visto che nessuno risponde lo faccio io.
Allora, supponiamo che il triangolo grande si chiami $ F_1 $ e abbia area $ 1 $. L'esagono si chiamerà $ F_2 $ e avrà area $ \frac{1}{2} $. Il triangolo si chiamerà $ F_3 $e avrà area $ \frac{3}{8}\cdot F_2=\frac{3}{16} $.
Non farò vedere tutti i conti, perchè non ce ne sono molti e mi sembrano abbastanza facili.
In generale, chiamando $ F_n $ l'ennesima figura, essa avrà area $ = (\frac{1}{2})^{\lfloor\frac{n}{2}\rfloor} \cdot (\frac{3}{8})^{\lfloor\frac{n-1}{2}\rfloor} $.
Ricordo che $ \lfloor x \rfloor $ vuol dire la parte intera di $ x $.
Quindi per rispondere a karlosson_sul_tetto:
a)$ \frac{F_1}{F_2}=\frac{1}{2} $
b)$ \frac{F_2}{F_3}=\frac{3}{8} $
c)$ \frac{F_1}{F_3}=\frac{3}{16} $
d)$ \frac{F_1}{F_n}=\displaystyle\frac{1}{(\frac{1}{2})^{\lfloor\frac{n}{2}\rfloor} \cdot (\frac{3}{8})^{\lfloor\frac{n-1}{2}\rfloor}} $.
karlosson_sul_tetto ha scritto:dall'più grande all'più piccolo
Non vorrei fare il pignolo, ma si scrive "dal più grande al più piccolo"
karlosson_sul_tetto ha scritto:Voglio capire..Ma perchè nessuno risolve o comenta sui problemi che ho postato?
Sei contento adesso?

Rilancio: quanto vale la somma infinita delle aree dei triangoli e degli esagoni?
(Non sono sicuro che ci sia una soluzione perchè non ho ancora provato a farlo)

Inviato: 13 ott 2009, 16:51
da karlosson_sul_tetto
Iuppiter ha scritto:Visto che nessuno risponde lo faccio io.
Allora, supponiamo che il triangolo grande si chiami $ F_1 $ e abbia area $ 1 $. L'esagono si chiamerà $ F_2 $ e avrà area $ \frac{1}{2} $. Il triangolo si chiamerà $ F_3 $e avrà area $ \frac{3}{8}\cdot F_2=\frac{3}{16} $.
Non farò vedere tutti i conti, perchè non ce ne sono molti e mi sembrano abbastanza facili.
In generale, chiamando $ F_n $ l'ennesima figura, essa avrà area $ = (\frac{1}{2})^{\lfloor\frac{n}{2}\rfloor} \cdot (\frac{3}{8})^{\lfloor\frac{n-1}{2}\rfloor} $.
Ricordo che $ \lfloor x \rfloor $ vuol dire la parte intera di $ x $.
Quindi per rispondere a karlosson_sul_tetto:
a)$ \frac{F_1}{F_2}=\frac{1}{2} $
b)$ \frac{F_2}{F_3}=\frac{3}{8} $
c)$ \frac{F_1}{F_3}=\frac{3}{16} $
d)$ \frac{F_1}{F_n}=\displaystyle\frac{1}{(\frac{1}{2})^{\lfloor\frac{n}{2}\rfloor} \cdot (\frac{3}{8})^{\lfloor\frac{n-1}{2}\rfloor}} $.
karlosson_sul_tetto ha scritto:dall'più grande all'più piccolo
Non vorrei fare il pignolo, ma si scrive "dal più grande al più piccolo"
karlosson_sul_tetto ha scritto:Voglio capire..Ma perchè nessuno risolve o comenta sui problemi che ho postato?
Sei contento adesso?

Rilancio: quanto vale la somma infinita delle aree dei triangoli e degli esagoni?
(Non sono sicuro che ci sia una soluzione perchè non ho ancora provato a farlo)
Grazie,adesso sono soddisfatto;grazie!

Inviato: 14 ott 2009, 00:25
da exodd
sono due serie geometriche di ragione 3/16, una che parte con 1, e l'altra con 1/2
$ \frac{1}{1-3/16}+\frac{1}{2}\frac{1}{1-3/16}=\frac{3}{2}\frac{16}{13}=\frac{24}{13} $
da ricontrollare i conti...

Inviato: 14 ott 2009, 15:26
da Iuppiter
Si, i conti dovrebbero essere giusti.

Inviato: 15 ott 2009, 14:23
da karlosson_sul_tetto
Iuppiter ha scritto:Si, i conti dovrebbero essere giusti.
Per fare il pignolo:"dovrebbero" esser giusti. :lol:
Cmq anche a me sono venuti gli stessi risultati di Iuppiter e l'ho fatto in un modo abbastanza simile.