Pagina 1 di 1

Inviato: 01 gen 1970, 01:33
da massiminozippy
Qualcuno potrebbe dirmi come si dimostra il principio di Cavalieri, visto che il mio libro di geometria non la porta.
<BR>Grazie.

Inviato: 01 gen 1970, 01:33
da mens-insana
Scusa l\'ignoranza ma che cosa dice il principio di Cavalieri?[addsig]

Inviato: 01 gen 1970, 01:33
da publiosulpicio
se due solidi hanno altezze uguali e se le sezioni fatte con piani paralleli alle basi e posti a distanze uguali da esse hanno sempre un rapporto dato, allora anche i volumi dei due solidi hanno lo stesso rapporto.
<BR>Con l\'integrale di Lebesgue dimostrarlo non è difficilissimo ma senza...

Inviato: 01 gen 1970, 01:33
da publiosulpicio
Anzi, mi viene ora in mete di aver studiato che non è dimostrabile a partire dagli assiomi euclidei e basta... sarebbe un ulteriore assioma (in effetti mooolto sensato)

Inviato: 01 gen 1970, 01:33
da Mathema
Scusa, ma non basterebbe applicare un semplice integrale?
<BR>Voglio dire, se sai che, essendo A(x) e a(x) l\'area delle sezioni ottenute con un piano parallelo alla base e distante x dalla base stessa, e sapendo che
<BR>a(x)= m/n*A(x), allora, posto V1=int[a..b]A(x)dx e V2=int[a..b]a(x)dx, otteniamo che V2=int[a..b]m/n*A(x)dx=m/n*int[a..b]A(x)dx=m/n*V1, da cui V2/V1=a(x)/A(x)=m/n.
<BR>Ditemi se ho scritto fregnacce...

Inviato: 01 gen 1970, 01:33
da logicus
Il principio di Cavalieri sembra che sia una amplificazione di due dei tre assi secondo uno stesso scalare; ad esempio, se la base o una sezione del primo solido sta sul piano definito dagli assi x e y, si ha X = kx e Y = ky (dimensioni della base o della sezione del secondo solido), cosicchè il rapporto fra sezioni corrispondenti citato nel principio è k^2, indipendentemente dalla forma della sezione.
<BR>
<BR>Il volume del solido dipende dall\'area di base e dall\'altezza, quindi il rapporto tra i volumi è ancora k^2.
<BR>Il fatto che il rapporto sia costante significa che i due solidi hanno la stessa forma, pur dilatata in due direzioni: cioè nessuno dei due ha \"bozzi\" o propaggini, che non porterebbero alla stessa conclusione.

Inviato: 01 gen 1970, 01:33
da massiminozippy
Il mio libro di Geometria dice che il principio di cavalieri è il seguente:
<BR>Se due solidi appoggiati su uno stesso piano alfa sono tagliati da ogni piano secante parallelo ad alfa secondo sezioni equivalenti, allora i due solidi sono equivalenti.
<BR>Accetto anche dimostrazioni che utilizzano l\'analisi, nonostante io non la sappia.

Inviato: 01 gen 1970, 01:33
da logicus
Detto così ricorda molto un\'integrale... partendo sempre da V=A*h, indipendentemente dalla forma e dall\'orientamento del solido, considerando dV=dA*dh, l\'uguaglianza tra due volumi è
<BR>
<BR> | A(h)*dh = | A(h\')*dh\'
<BR>con | come segno d\'integrale, e A(h) l\'area della sezione parallela alla base ad una certa altezza h, espressa come funzione; il che equivale (credo) a quello che ha scritto mathema che ha generalizzato nel caso di un rapporto fra aree corrispondenti diverso da 1.
<BR>
<BR>L\'uguaglianza è facilmente verificata dato che per ogni dh il principio afferma che A(h) = a(h\').
<BR>
<BR>
<BR><b>Davide</b>
<BR><i>\"La violenza è l\'ultimo rifugio degli incapaci\"</i> - Hari Seldon (Isaac Asimov)<BR><BR>[ Questo Messaggio è stato Modificato da: logicus il 11-06-2003 16:13 ]