Pagina 1 di 1

Ancora una diofantea

Inviato: 20 giu 2011, 20:59
da pepperoma
Trovare tutti gli interi $ x,y $ tali che $ 2x^2+5y^2=11(xy-8) $.

Re: Ancora una diofantea

Inviato: 21 giu 2011, 01:08
da Hawk
Riscrivo l'equazione come:

$ 2x^2+5y^2-11xy=-88 $
Scompongo il primo fattore ottenendo:

$ 2(x-5y)(2x-\frac{y}{2})=-88 $

I divisori di $ 88 $ sono: $ 1,2,4,8,11,22,44,88 $.
Imposto quindi i vari sistemi di cui l'unico che ha soluzione intera รจ:

$ \begin{cases}x-5y=-4\\4x-y=22\\\end{cases} $

Le coppie di soluzioni $ (x,y) $ sono $ (6,2)\land(-6,-2) $.

Va bene?