Disuguaglianza tra radici
Inviato: 25 set 2011, 14:34
Dimostrate che, pper ogni $\displaystyle (a,b,c,d,)\in \mathbb{R}^+$
$$\displaystyle \sqrt{\frac{a^2+b^2+c^2+d^2}{4}} \geq \sqrt[3]{\frac{abc+abd+acd+bcd}{4}}$$
$$\displaystyle \sqrt{\frac{a^2+b^2+c^2+d^2}{4}} \geq \sqrt[3]{\frac{abc+abd+acd+bcd}{4}}$$