sui numeri triangolari
Inviato: 14 gen 2012, 21:02
Boh... è una cosa che ho pensato oggi, spero che non sia una cattiva idea pubblicarla qui...
Trovare una funzione (algebrica) $ f(n) $ $ N \rightarrow R $ tale che, per ogni scelta di $ n>1 $, esista uno ed un solo naturale $ k $ per cui $ \displaystyle f(n) < \frac{(k)(k+1)}{2}<n $
Trovare una funzione (algebrica) $ f(n) $ $ N \rightarrow R $ tale che, per ogni scelta di $ n>1 $, esista uno ed un solo naturale $ k $ per cui $ \displaystyle f(n) < \frac{(k)(k+1)}{2}<n $