Pagina 1 di 1

Disuguaglianza molto cattiva.

Inviato: 15 feb 2014, 01:09
da jordan
Own. Sia dato un insieme $X$ di $30$ reali positivi tale che le media aritmetica dei suoi elementi è il doppio della media geometrica degli stessi. Siano fissati $\{a,b,c\} \subset X$, non necessariamente distinti.

Dimostrare che
$$\left(\frac{a+b+c}{2}\right)^3< \text{ }10^{30} abc.$$

Re: Disuguaglianza molto cattiva.

Inviato: 25 feb 2014, 18:45
da machete
Ci provo con $ a, b, c $ distinti. Se sono tutti uguali è banale, se è la via di mezzo non ci ho ancora pensato :D !

Siano dati $ x_1,\ldots , x_{30} $ reali non negativi tali che:

$ \displaystyle \frac{x_1+\ldots +x_{30}}{30}=2\cdot \sqrt[30]{x_1\cdot \ldots \cdot x_{30}}\qquad (1) $

Supponiamo ce ne siano tre, WLOG $ x_1 $, $ x_2 $ e $ x_3 $ tali che valga la negazione della tesi, ossia:

$ \displaystyle 2\cdot 10^{10}\, \sqrt[3]{x_1\cdot x_2\cdot x_3} \leq x_1+x_2+x_3\qquad (2) $

Dividendo ogni elemento della 30-upla per la somma di tutti gli elementi della 30-upla si ha che (1) e (2) continuano a valere poiché sono disuguaglianze omogenee. Possiamo quindi supporre che la somma degli $ x_i $ sia uguale a uno.
Riscriviamo ora la (1) elevata alla 10, usiamo la (2) e applichiamo AM-GM:

$ \displaystyle 30^{-10}={\left( \frac{x_1+\ldots +x_{30}}{30}\right)}^{10}=2^{10}\cdot \sqrt[3]{x_1\cdot x_2\cdot x_3}\cdot \sqrt[3]{x_4\cdot \ldots \cdot x_{30}}\leq 2^9\cdot 10^{-10}(x_1+x_2+x_3)\cdot {\left(\frac{x_4+\ldots+x_{30}}{27}\right)}^{27/3}<\frac{2^9}{10^{10}\cdot 27^{9}} $

Dove abbiamo usato che se la somma è 1 le somme parziali, essendo gli $ x_i $ non negativi, sono strettamente minori di 1. Guardando primo e ultimo membro si ottiene:

$ 10^{10}\cdot 3^{27}<2^9\cdot 3^{10} \cdot 10^{10}\quad \Leftrightarrow \quad 3^{17}<2^9 $

ma ciò è chiaramente assurdo, dunque (2) è falsa dunque la tesi.

Re: Disuguaglianza molto cattiva.

Inviato: 27 feb 2014, 21:35
da aetwaf
Edit
Ho capito, scusa

Re: Disuguaglianza molto cattiva.

Inviato: 27 feb 2014, 21:37
da aetwaf
Edit
Vedi sopra

Re: Disuguaglianza molto cattiva.

Inviato: 28 feb 2014, 09:39
da jordan
Mi pare corretta, bene :wink: