Ehh sisi..dovremmo esserci
La tesi equivale a dimostrare che $1-\left( \frac{1}{4-ab}+\frac{1}{4-ca}+\frac{1}{4-bc} \right)\ge 0\Rightarrow \left( \frac{1}{3}-\frac{1}{4-ab} \right)+\left( \frac{1}{3}-\frac{1}{4-bc} \right)+\left( \frac{1}{3}-\frac{1}{4-ca} \right)\ge 0$,
ossia $\left( \frac{1}{3}\cdot \frac{1-ab}{4-ab} \right)+\left( \frac{1}{3}\cdot \frac{1-bc}{4-bc} \right)+\left( \frac{1}{3}\cdot \frac{1-ca}{4-ca} \right)\ge 0$ e , in definitiva, $\left( \frac{1-ab}{4-ab} \right)+\left( \frac{1-bc}{4-bc} \right)+\left( \frac{1-ca}{4-ca} \right)\ge 0$.
WLOG: $0\le a\le b\le c$, quindi $0\le ab\le ac\le bc$.
Poiché ${{a}^{4}}+{{b}^{4}}+{{c}^{4}}=3$ per ipotesi, si ha anche $3={{a}^{4}}+{{b}^{4}}+{{c}^{4}}\ge {{a}^{2}}{{b}^{2}}+{{a}^{2}}{{c}^{2}}+{{b}^{2}}{{c}^{2}}$ e
$1-{{a}^{2}}{{b}^{2}}+1-{{a}^{2}}{{c}^{2}}+1-{{b}^{2}}{{c}^{2}}\ge 0$.
E ancora, $3\ge {{a}^{2}}+{{b}^{2}}+{{c}^{2}}\ge ab+bc+ca$, tutte valide per disuguaglianze tra medie.
Riscriviamo ogni addendo della Tesi : $\left( \frac{1-ab}{4-ab} \right)\cdot \left( \frac{1+ab}{1+ab} \right)=\frac{1-{{a}^{2}}{{b}^{2}}}{4+3ab-{{a}^{2}}{{b}^{2}}}$.
Per le assunzioni fatte avremo $1-{{a}^{2}}{{b}^{2}}\ge 1-{{a}^{2}}{{c}^{2}}\ge 1-{{b}^{2}}{{c}^{2}}$.
Poiché $3\ge ab+bc+ca$, allora $\begin{align}
& 3\ge ab+bc+ca\ge ac+bc\Rightarrow 3\cdot (bc-ac)\ge {{b}^{2}}{{c}^{2}}-{{a}^{2}}{{c}^{2}}\Rightarrow 3bc-{{b}^{2}}{{c}^{2}}\ge 3ac-{{a}^{2}}{{c}^{2}} \\
& 3\ge ab+bc+ca\ge ac+ab\Rightarrow 3\cdot (ac-ab)\ge {{a}^{2}}{{c}^{2}}-{{a}^{2}}{{b}^{2}}\Rightarrow 3ac-{{a}^{2}}{{c}^{2}}\ge 3ab-{{a}^{2}}{{b}^{2}} \\
\end{align}$
e quindi \[4+3ab-{{a}^{2}}{{b}^{2}}\le 4+3ac-{{a}^{2}}{{c}^{2}}\le 4+3bc-{{b}^{2}}{{c}^{2}}\Rightarrow \frac{1}{4+3ab-{{a}^{2}}{{b}^{2}}}\ge \frac{1}{4+3ac-{{a}^{2}}{{c}^{2}}}\ge \frac{1}{4+3bc-{{b}^{2}}{{c}^{2}}}.\]
Inoltre \[4+3ab-{{a}^{2}}{{b}^{2}}\ge 0\] perché $3\ge ab\ge 0$.
Adesso uso
Chebyshev e otteniamo
$\sum\limits_{cyc}{\left( \frac{1-ab}{4-ab} \right)=}\sum\limits_{cyc}{\left( \frac{1-ab}{4-ab} \right)\cdot \left( \frac{1+ab}{1+ab} \right)}=\sum\limits_{cyc}{\left( \frac{1-{{a}^{2}}{{b}^{2}}}{4+3ab-{{a}^{2}}{{b}^{2}}} \right)}\ge \frac{1}{3}\left( \sum\limits_{cyc}{\left( 1-{{a}^{2}}{{b}^{2}} \right)} \right)\cdot \left( \sum\limits_{cyc}{\frac{1}{4+3ab-{{a}^{2}}{{b}^{2}}}} \right)\ge 0.$ C.V.D.