Pagina 1 di 1

Quando l'alternanza scuola lavoro ti annoia...

Inviato: 16 mag 2016, 20:50
da Gerald Lambeau
...e tenti di risolvere funzionali a caso.
Trovare:
(a) $f: \mathbb{R} \rightarrow \mathbb{R}$ tale che $f(x+y)=xf(x)+yf(y)$;
(b) $f: \mathbb{Z^+} \rightarrow \mathbb{R}$ tale che $f(x+y)=xf(y)+yf(x)$.

Re: Quando l'alternanza scuola lavoro ti annoia...

Inviato: 16 mag 2016, 22:13
da Talete
Oddio non farmici pensare all'alternanza scuola lavoro che ho già bestemmiato abbastanza questa settimana (ed è solo lunedì).

(a) ponendo $x\mapsto0$ si ottiene $f(y)=yf(y)$, da cui o $y=1$ oppure $f(y)=0$. Inoltre ponendo $x\mapsto1$ e $y\mapsto1$ si ottiene $2f(1)=f(2)=0$, quindi la funzione è costantemente nulla.

(b) ponendo $x\mapsto1$ si ottiene $f(y+1)=f(y)+yf(1)$. Chiamo $f(1)=k$ con $k$ reale e ora rimane praticamente una successione $a_i$, con $a_1=k$ e $a_{n+1}=a_n+kn$. Si verifica facilmente che $a_n=k\cdot\left(\displaystyle\frac{n(n-1)}2+1\right)$ è soluzione, ed essendo la soluzione unica allora questa è l'unica soluzione. Dunque $f(x)=a_x$ è l'unica soluzione dell'equazione.

Sto per andare a dormire quindi probabilmente avrò sbagliato entrambi i problemi, però il titolo mi attirava...

Re: Quando l'alternanza scuola lavoro ti annoia...

Inviato: 16 mag 2016, 22:42
da Gerald Lambeau
La (a) è giusta, la (b) assolutamente no, quella successione è sbagliata (cioè, la successione di per sé è giusta, ma non è detto che soddisfi l'equazione iniziale).

Re: Quando l'alternanza scuola lavoro ti annoia...

Inviato: 17 mag 2016, 07:23
da Talete
Ah già è vero: ora riguardando mi accorgo dell'errore! Lo sistemo poi ;)

EDIT: in realtà dovrei vestirmi per andare a scuola, però mi è venuta voglia di fare il problema...

$f(2)=f(1+1)=2f(1)$

$f(3)=f(2+1)=4f(1)$

$f(4)=f(3+1)=7f(1)$

$f(4)=f(2+2)=8f(1)$

quindi $7f(1)=8f(1)$, quindi $f(1)=0$, quindi la funzione è costantemente nulla [infatti $f(y+1)=f(y)+yf(1)=f(y)$].

Re: Quando l'alternanza scuola lavoro ti annoia...

Inviato: 17 mag 2016, 16:24
da Gerald Lambeau
Giusta! :)