Pagina 1 di 1
Infiniti n > 0 t.c. tau(nx) = x non ammetta soluzioni
Inviato: 04 gen 2006, 16:15
da HiTLeuLeR
Well, a new problem has come (IMO shortlist del 2004). Davvero molto bello...
Per ogni intero $ n > 0 $, sia $ \tau(n) $ il numero dei divisori di $ n $. Mostrare che esistono infiniti $ n\in\mathbb{Z}^+ $ tali che l'equazione $ \tau(nx) = x $ non ammette soluzioni in interi positivi.
Inviato: 04 gen 2006, 16:58
da HumanTorch
Sia $ p\in \mathfrak{P} $. Possiamo scartare gli x dispari perchè basta aggiungerci n=p
In generale la tesi è vera perchè basta prendere $ p^{2^z-1} $ indefinitamente grande per scartare tutti gli x tali che $ 2^j||x $( si scrive così se $ 2^j|x $ ma $ 2^j $ non divide x?), j<z
Inviato: 04 gen 2006, 17:05
da HiTLeuLeR
HumanTorch ha scritto:Sia $ p\in \mathfrak{P} $. Possiamo scartare gli x dispari perchè basta aggiungerci n=p
E questo che diamine significherebbe?! Ah, che pessima attitudine, quella di chiedere spiegazioni, là dove il discorso non è chiaro!

Aiutami a capire quel che intendi, ché poi ragioniamo pure sul resto.
Inviato: 04 gen 2006, 17:14
da HumanTorch
Niente, ho risposto alla domanda come se x fosse prefissato. Vedo se posso aggiustarlo
Inviato: 04 gen 2006, 17:19
da HiTLeuLeR
Ecco, il mio sospetto era proprio quello...

Inviato: 04 gen 2006, 18:22
da Igor
Dimostriamo che tutti gli $ n $ della forma $ p^{p-1} $, con $ p $ primo maggiore di 3 verificano la tesi.
Distinguiamo due casi:
A)$ x $ è coprimo con $ p $.
L'equazione diventa allora:
$ \sigma_0(p^{p-1}*x)=x $
$ \sigma_0(p^{p-1})*\sigma_0(x)=x $
$ p*\sigma_0(x)=x $ assurdo poichè abbiamo posto $ (p,x)=1 $.
B)$ (x,p)>1 $
Possiamo allora porre $ x=p^s*\omega $, con $ p,\omega\in N $, $ s\geq 1 $, $ (p,\omega)=1 $.
L'equazione diventa
$ \sigma_0(p^{p+s-1}*\omega)=\omega*p^s $
$ (p+s)*\sigma_0(\omega)=\omega*p^s $
(1) $ \displaystyle \frac{\sigma_0(\omega)}{\omega}=\frac{p^s}{p+s}\displaystyle $
Ammettiamo ora che sia $ s\geq 2 $.
Allora il membro destro della (1) ha valore minimo uguale a 1,per $ s=2 $ e $ p=2 $.
Il membro sinistro ha massimo uguale a $ 1 $ per $ \omega=2 $.Abbiamo però posto $ (\omega,p)=1 $.Quindi la (1),per $ s\geq 2 $ non ha soluzioni.Ammettiamo dunque $ s=1 $.La (1) diventa
$ \displaystyle \frac{\sigma_0(\omega)}{\omega}=\frac{p}{p+1}\displaystyle $
Il massimo per il mebro sinistro è nuovamente $ 1 $ per $ \omega=2 $.Tuttavia $ \frac{p}{p+1}=1 $ non è verificato per nessun $ p $.Troviamo dunque il massimo per il membro sinistro escludendo il valore $ \omega=2 $.Si trova facilmente che il massimo è $ \frac{3}{4} $ per $ \omega=4 $.Se infatti $ \omega $ fosse della forma $ 2*p $,il valore massimo sarebbe $ \frac{2}{3} $ per $ \omega=6 $ ed abbiamo che $ 3/4>2/3 $.
Per $ p>3 $ si ha però
$ \displaystyle\frac{p}{p+1}>\frac{3}{3+1}=\frac{3}{4}\displaystyle $.
Dunque la (1) non ha soluzione neanche se $ s=1 $.
Dunque, se $ n $ è della forma $ p^{p-1} $, con $ p $ primo >3,l'equazione $ \sigma_0(nx)=x $ non ha soluzioni.Poichè i numeri primi sono infiniti,abbiamo anche infiniti $ n $.
Inviato: 04 gen 2006, 20:50
da HiTLeuLeR
Sì, Igor, assolutamente impeccabile. Son certo che in molti te l'avran già detto, ma lascia che anch'io mi aggiunga a loro: BRAVO!
