Pagina 1 di 1

significato del modulo della derivata seconda

Inviato: 27 giu 2006, 11:07
da desko
Come da oggetto: aiutando alcuni amici per la maturità mi è venuto questo dubbio:
nello studio di funzione della derivata prima si sfrutto il segno, ma anche il modulo, nel senso che a modulo maggiore corrisponde inclinazione maggiore (verso l'alto o il basso a seconda del segno), ma della derivata seconda si sfrutta sempre solo il segno: che significato si può associare al modulo?
La cosa più bella sarebbe se indicasse l'apertura, nel senso del raggio del cerchio osculatore, ma evidentemente non è così, basta pensare alla parabola.
Grazie mille.

Re: significato del modulo della derivata seconda

Inviato: 27 giu 2006, 13:04
da pic88
desko ha scritto: La cosa più bella sarebbe se indicasse l'apertura, nel senso del raggio del cerchio osculatore, ma evidentemente non è così, basta pensare alla parabola.
?

perchè la parabola no?
la derivata seconda è il coefficiente di secondo grado, moltiplicato per 2. al suo crescere, la parabola è più "chiusa", e il raggio diminuisce. Dunque il modulo è indice dell'apertura della curva.
forse non ho capito...

Re: significato del modulo della derivata seconda

Inviato: 27 giu 2006, 13:34
da desko
pic88 ha scritto:
desko ha scritto: La cosa più bella sarebbe se indicasse l'apertura, nel senso del raggio del cerchio osculatore, ma evidentemente non è così, basta pensare alla parabola.
?

perchè la parabola no?
la derivata seconda è il coefficiente di secondo grado, moltiplicato per 2. al suo crescere, la parabola è più "chiusa", e il raggio diminuisce. Dunque il modulo è indice dell'apertura della curva.
forse non ho capito...
Pensa la cerchio osculatore di una parabola nei suoi vari punti: nel vertice il raggio sarà minimo e man mano che ci si allontana il raggio aumenta, eppure la derivata seconda è sempre la stessa ...
Probabilmente bisogna intendere la curvatura in un significato diverso.

Inviato: 27 giu 2006, 15:07
da EvaristeG
La derivata seconda è legata al raggio del cerchio osculatore, ovvero all'inverso della curvatura ... solo che non è l'unica cosa di cui si deve tenere conto : importa anche il cosiddetto elemento di lunghezza :
$ \kappa=\displaystyle{\frac{f''(x)}{(1+f'(x)^2)^\frac{3}{2}}} $
con $ \kappa $ si indica tradizionalmente l'inverso del raggio del cerchio osculatore, ovvero la curvatura.

Inviato: 27 giu 2006, 18:21
da desko
È proprio la formula di cui sospettavo l'esistenza, che doveva avere una forma del genere.

Inviato: 27 giu 2006, 21:05
da EvaristeG
Dimostrazione in breve :
sia x_0 un punto dell'asse delle ascisse; la normale in x_0 a y=f(x) è
$ y=-\frac{1}{f'(x_0)}(x-x_0)+f(x_0) $
Quindi l'intersezione delle normali in due punti x_0 e x_1 avrà ascissa data da
$ \displaystyle{x(x_1)=\frac{f'(x_0)f'(x_1)(f(x_1)-f(x_0))+x_1f'(x_0)-x_0f'(x_1)}{f'(x_0)-f'(x_1)}} $
Ora, il centro del cerchio osculatore in x_0 avrà ascissa data da
$ x_C=\displaystyle{\lim_{x_1\to x_0}x(x_1)=x_0-f'(x_0)\frac{1+f'(x_0)^2}{f''(x_0)}} $
E dunque l'ordinata sarà
$ y_C=f(x_0)+\displaystyle{\frac{1+f'(x_0)^2}{f''(x_0)}} $
Quindi il raggio di curvatura è
$ \displaystyle{\rho(x_0)=\left|\frac{(1+f'(x_0)^2)^\frac{3}{2}}{f''(x_0)}\right|} $