La congettura di Goldbach si riporta alla phi
Inviato: 31 ago 2006, 07:30
Provare che la congettura di Goldbach è vera sse, per ogni intero n > 1, esistono primi $ p, q \in \mathbb{N} $ tali che $ \phi(p) + \phi(q) = 2n $.
il forum ufficiale delle olimpiadi della matematica
https://www.oliforum.it/
A proposito... se non erro Erdos dimostrò che l'equazione $ \phi(x)+\phi(y)=2n $ ha soluzione per ogni $ n $ con $ x,y $ interi non necessariamente primi.HiTLeuLeR ha scritto:Provare che la congettura di Goldbach è vera sse, per ogni intero n > 1, esistono primi $ p, q \in \mathbb{N} $ tali che $ \phi(p) + \phi(q) = 2n $.
Se l'è chiesto, non l'ha dimostrato.Santana ha scritto:A proposito... se non erro Erdos dimostrò che l'equazione $ \phi(x)+\phi(y)=2n $ ha soluzione per ogni $ n $ con $ x,y $ interi non necessariamente primi.