Pagina 1 di 1

topologia

Inviato: 25 ott 2006, 17:12
da dorothyhung
x spazio topologico diverso dal vuoto.
Le seguenti condizioni sono equivalenti:
1. X è irriducibile (se X=AuB con A,B appartenenti ai chiusi di X allora segue che X=A oppure X=B)
2. per ogni U appartenente agli aperti di X meno il vuoto si ha che U è connesso.

Mi aiutate a dimostrarlo per piacere?

Inviato: 26 ott 2006, 09:48
da Catraga
Allora ti do' degli hints. Topologia non la si impara guardando le dimostrazioni, ma facendole...

$ 1\implies 2 $
Per assurdo, supponi che U sia aperto e non connesso. Quindi esiste una coppia di aperti di sconnessione... come si relazionano questi con la riducibilità di X?

$ 2\implies 1 $
per assurdo, supponi che X sia riducibile, allora esitono le due componenti... costruisci un aperto opportuno in modo tale che sia sconnesso (quale è la coppia di sconnessione di questo aperto...?)

Inviato: 26 ott 2006, 18:09
da dorothyhung
Perdonami sono alle prime armi e non riesco a trovare quello che mi hai suggerito di trovare... mi aiuti ancora?

Inviato: 27 ott 2006, 11:06
da Catraga
Allora, io faccio un verso, poi tu provi a fare l'altro:

$ 2\implies 1 $
Supponiamo che ogni aperto U della topologia su X sia connesso
Siano A, B le componenti in cui X si riduce, esse, per ipotesi, sono chiusi. Consideriamone i complementari, essi sono due aperti C(A) e C(B) della topologia su X.
La loro unione U e' un aperto della topologia di X, e quindi dovrebbe essere connesso. Vediamo che cio' non e' possibile poiche' C(A) e C(B) sono disgiunti.
Allora i punti di $ C(A)\cap C(B) $ non sono in $ A\cup B=X $ assurdo.