Ancora un in-cubo

Meccanica, termodinamica, elettromagnetismo, relatività, ...
Rispondi
Avatar utente
Flavio5x
Messaggi: 67
Iscritto il: 17 mag 2006, 11:04
Località: Mestre

Ancora un in-cubo

Messaggio da Flavio5x » 24 mag 2006, 22:55

Cari amici, ho visto in un precedente topic un problema basato su resistori disposti secondo gli spigoli di un cubo, e ho deciso di proporre alcune varianti.

12 resistori uguali, ciascuno di resistenza R, sono disposti come gli spigoli di un cubo. Si chiede di determinare:
1) la resistenza equivalente ai morsetti costituiti da due vertici opposti di una faccia del cubo
2) la resistenza equivalente ai morsetti costituiti da due vertici adiacenti (posti ai due estremi di uno spigolo)
L’incubo poi si complica in tal modo: immaginate di aggiungere altri resistori in modo che alla fine ciascun vertice del cubo risulti collegato a ciascuno degli altri 7 vertici mediante un resistore di resistenza R (28 resistori in totale). Si chiede di determinre:
3) la resistenza equivalente ai morsetti costituiti da due vertici qualsiasi del cubo

Avatar utente
Gauss_87
Messaggi: 294
Iscritto il: 21 gen 2006, 17:20
Località: Pisa

Messaggio da Gauss_87 » 26 mag 2006, 14:28

Posso dare la risposta (1) per il momento perchè è un problemino di ammissione SNS ma non ricordo l'anno.

la resistenza equivalente tra due vertici opposti è $ \frac{5}{6}R $ perchè:

siano i due vertici opposti in considerazione $ A $ e $ B $.
$ A $ ha tre vertici "adiacenti", cioè da $ A $ partono spigoli del cubo e per definizione di potenziale (- integrale dal riferimento al punto considerato del vettore campo elettrico scalare lo spostamento ds...bla bla bla...) i 3 tre vertici hanno lo stesso potenziale, quindi le 3 resistenze dei 3 spigoli sono in PARALLELO e la resistenza equivalente $ R_A = \frac{R}{3} $.
Analogamente per $ B $, $ R_B = \frac{R}{3} $.

Ora il collegamento intermedio sta tra il potenziale di uno dei 3 vertici "adiacenti" ad $ A $ e il potenziale di uno dei vertici "adiacenti" a $ B $ quindi la resistenza equivalente intermedia è il parallelo tra $ R_A $ e $ R_B $ cioè $ R_I = \frac{R}{6} $.

Sommando le 3 adesso in serie: $ R_{tot} = \frac{5}{6} $

8)
Considerate la vostra semenza: fatte non foste a viver come bruti, ma per seguir virtute e canoscenza

Avatar utente
Flavio5x
Messaggi: 67
Iscritto il: 17 mag 2006, 11:04
Località: Mestre

Messaggio da Flavio5x » 26 mag 2006, 18:35

Sì, il calcolo è giusto ma non risponde alla domanda 1.
Se leggi bene la domanda 1, chiede di prendere in considerazione i vertici opposti di una faccia, non quelli opposti rispetto al cubo.

__Cu_Jo__
Messaggi: 207
Iscritto il: 10 mar 2005, 07:39

Messaggio da __Cu_Jo__ » 26 mag 2006, 19:26

Intanto rispondo alla 1.Chiamo A,B,C,D i vertici della base inferiore e rispettivamente A',B',C',D' i vertici della base superiore.
$ \displaystyle V_B - V_A = R\frac{i}{3} \\V_{B'} - V_B = R\frac{i}{6} $
Sommando viene fuori che la resistenza equivalente ai morsetti costituiti da due vertici opposti di una faccia del cubo è $ \frac{R}{2} $

__Cu_Jo__
Messaggi: 207
Iscritto il: 10 mar 2005, 07:39

Messaggio da __Cu_Jo__ » 26 mag 2006, 19:33

Per la 2 non ci sono 2 possibili scelte :$ \frac{R}{3} $,$ \frac{R}{6} $?Vabbè,torno a studiare Freud :? ...

Avatar utente
Flavio5x
Messaggi: 67
Iscritto il: 17 mag 2006, 11:04
Località: Mestre

Messaggio da Flavio5x » 26 mag 2006, 20:55

A dire il vero di questi risultati proposti non me ne torna nemmeno uno.
Spero comunque che prima o poi qualcuno arrivi alle stesse mie soluzioni. Non ho nessuna voglia di prendere il saldatore e costruirmi il dannato cubo per verificare!

Avatar utente
Gauss_87
Messaggi: 294
Iscritto il: 21 gen 2006, 17:20
Località: Pisa

Messaggio da Gauss_87 » 26 mag 2006, 21:43

si Flavio5x hai ragione, non ho ben letto il testo perchè fine anno significa esami imminenti, cioè iniziare a studiare quel che mi manca di 3 anni... :lol:
quindi frequentoil forum solo nei ritagli di tempo e sopratutto di fretta!
Se ho tempo ti evito di prendere il saldatore!!! (ma dubito di aver tempo...)
Bye
Considerate la vostra semenza: fatte non foste a viver come bruti, ma per seguir virtute e canoscenza

Avatar utente
Flavio5x
Messaggi: 67
Iscritto il: 17 mag 2006, 11:04
Località: Mestre

Messaggio da Flavio5x » 30 mag 2006, 09:23

Beh, che succede? Tutto tace!
Eppure, se non mi sto sbagliando di grosso, mi sembra che applicando elementari criteri di simmetria (che permettono di semplificare le reti) le soluzioni siano abbastanza banali!
Qualcuno ci vuole provare?

Avatar utente
Flavio5x
Messaggi: 67
Iscritto il: 17 mag 2006, 11:04
Località: Mestre

Messaggio da Flavio5x » 04 giu 2006, 22:36

Vista la scarsità di contributi non mi resta che pubblicare le soluzioni (vedi figura; nelle formule la serie è indicata con +, il parallelo è indicato con //).
Immagine
Caso 1) (vertici opposti di una faccia)
I punti CDEF sono equipotenziali per ragioni di simmetria, e quindi non solo i punti C e D possono essere collegati con corti circuiti (linee tratteggiate), ma anche i rami CE e DF possono essere sostituiti con corti circuiti. Così facendo i rami AC e AD sono in parallelotra loro. Operando in tal modo anche sugli altri rami simili e svolgendo le serie e i paralleli come indicato, si ottiene Req=3/4 R
Caso 2) (vertici opposti di uno spigolo)
Per ragioni di simmetria i vertici CD sono equipotenziali, e pertanto possono venire collegati con un corto circuito (linea tratteggiata). Analogamente i vertici EF. In tal modo i rami AC e AD risultano in parallelo, e svolgendo gli altri paralleli analoghi e le serie come indicato in figura risulta Req=7/12 R
Caso 3) (vertici integralmente connessi tra loro)
Presi due qualsiasi verici AB, esiste un ramo che li collega direttamente, mentre ciascuno degli altri 6 vertici è connesso con un ramo sia ad A che a B. Poi i 6 vertici rimanenti sono completamente connessi tra loro (queste connessioni sono simbolicamente rappresentate con l'ellisse in figura). Per ragioni di simmetria tutti i vertici compresi nell'ellisse sono equipotenziali tra loro, e quindi possono essere collegati con un unico cortocircuito, oppure possono essere idealmente tolti i rami che li collegano perchè in essi non circola corrente. Svolgo questo secondo caso, ma anche considerandoli in cortocircuito si giungerebbe allo stesso risultato. Allora abbiamo 6 paralleli di due resistori in serie, il tutto in parallelo con un resistore rappresentato dal ramo che collega AB direttamente. Il risultato è, come indicato in figura, Req=1/4 R.

Rispondi