Teoria dei Numeri @ SNS

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
Avatar utente
Gauss_87
Messaggi: 294
Iscritto il: 21 gen 2006, 17:20
Località: Pisa

Teoria dei Numeri @ SNS

Messaggio da Gauss_87 » 16 giu 2006, 14:04

Un problema di ammissione del 2002 credo chiedeva:

Dire se esiste un numero multiplo di 2002 la cui somma delle cifre faccia proprio 2002.

_____________________________________________

Ora sul sito della didattica della SNS ci sta un metodo abbastanza semplice per costruire un numero sì fatto....

La mia domanda è:
è sufficiente ricorrere al TEOREMA CINESE DEL RESTO per dimostrare che esiste un numero sì fatto?

Cioè basta che il numero $ x $ soddisfi contemporaneamente:

$ x \equiv 0 $ (mod $ 2002 $)
$ x \equiv 2002 $ (mod $ 9 $)

in quanto la somma delle cifre di un numero è la sua congruenza modulo 9.

Adesso il TH C del R ci (o almeno dovrebbe!) assicura che 2002 e 9 coprimi implicano l'esistenza di una soluzione.

E' giusto ragionare (e concludere la dimostrazione!) così???
Considerate la vostra semenza: fatte non foste a viver come bruti, ma per seguir virtute e canoscenza

Avatar utente
Ani-sama
Messaggi: 418
Iscritto il: 19 feb 2006, 21:38
Località: Antwerpen (BE)
Contatta:

Messaggio da Ani-sama » 16 giu 2006, 14:12

Me lo ricordo bene quel problema... lo risolvetti grazie all'aiuto di un seminarista allo stage di S. Miniato, a sett. scorso...

senza dimostrare niente... tu prendi il numero $ $10010 = 2002 \cdot 5$ $... non ti resta che prendere quello come un "modulo" (non nel senso di "modulo" come si intende nelle congurenze, eh!) e "replicarlo" 1001 volte... la somma delle cifre del "modulo" è pari a $ $2$ $, è dunque chiaro che la somma delle cifre del numerone ottenuto è proprio 2002... :D

@Gauss87

Comunque penso che un ragionamento come il tuo possa andare più che bene... anche se non conosco (ancora) il famoso Teorema Cinese... :D
Ultima modifica di Ani-sama il 16 giu 2006, 17:57, modificato 1 volta in totale.
...

Avatar utente
HumanTorch
Messaggi: 281
Iscritto il: 01 gen 1970, 01:00
Località: Tricase

Messaggio da HumanTorch » 16 giu 2006, 14:24

c'è $ \displaystyle\underbrace{1001100110011001....}_{999 volte}2002 $
:D
(post totalmente inutile, a quanto vedo, ma lo tengo giusto per provare \underbrace)

Avatar utente
edriv
Messaggi: 1638
Iscritto il: 16 feb 2006, 19:47
Località: Gradisca d'Isonzo
Contatta:

Messaggio da edriv » 16 giu 2006, 15:21

Comunque il ragionamento di Gauss_87 è sbagliato...
anche $ 4 \equiv 2002 \pmod 9 $, ma 4 non è certamente multiplo di 2002, se ho ben capito...

Avatar utente
Gauss_87
Messaggi: 294
Iscritto il: 21 gen 2006, 17:20
Località: Pisa

Messaggio da Gauss_87 » 16 giu 2006, 16:54

edriv ha scritto:Comunque il ragionamento di Gauss_87 è sbagliato...
anche $ 4 \equiv 2002 \pmod 9 $, ma 4 non è certamente multiplo di 2002, se ho ben capito...
non, nn ci siamo capiti... nessuno!

Ho detto che costruire un multiplo di 2002 con 2002 cifre è ben chiaro a tutti grazie al trucchetto ricordato su qst topic e ben spiegato su un pdf che sta sul sito della didattica SNS.

Riguardo l'obiezione di edriv: 4 sarà congruo a 2002 modulo 9 (spero hai fatto bene i conti perchè io nn ho voglia :lol: ) ma cmq non è congruo a 0 modulo 2002!

Avevo scritto che dovrei trovare una $ x \in \mathbb{N} $ che soddisfa ENTRAMBE e dico ENTRAMBE le due congruenze!

Quindi ripeto la mia domanda:
basta il Teorema Cinese del Resto applicato a quelle 2 congruenze messe a sistema per dimostrare che esiste un numero sì fatto??? :?: ???
Considerate la vostra semenza: fatte non foste a viver come bruti, ma per seguir virtute e canoscenza

Avatar utente
Gauss_87
Messaggi: 294
Iscritto il: 21 gen 2006, 17:20
Località: Pisa

Messaggio da Gauss_87 » 16 giu 2006, 17:05

Ani-sama ha scritto:È chiaro che qualsivoglia numero che termini in quel modo risulta essere multiplo di 2002...
Il numero per come l'hai fatto te soddisfa le ipotesi del problema ma nn certo perchè un qualsivoglia numero che termini in quel modo risulta essere multiplo di 2002 :!:
prendi 310010: non è multiplo di 2002 :!:

Il numero fatto in quel modo funziona perchè: $ 10010 = 2002 \cdot 5 $ e

$ 10010 + 10^5 \cdot 10010 + 10^{10} \cdot 10010 + ... + 10^{5n} \cdot 10010 $, è multiplo di 2002 :idea:, dove $ n \in \mathbb{Z}^+ $

Adesso concentriamoci sulla mia domanda e sul TEOREMA CINESE del RESTO :wink:
Considerate la vostra semenza: fatte non foste a viver come bruti, ma per seguir virtute e canoscenza

Avatar utente
edriv
Messaggi: 1638
Iscritto il: 16 feb 2006, 19:47
Località: Gradisca d'Isonzo
Contatta:

Messaggio da edriv » 16 giu 2006, 17:21

Gaussz: rimango ancora dell'opinione che quel modo sia sbagliato.
Infatti, cosa intendi dicendo che:
in quanto la somma delle cifre di un numero è la sua congruenza modulo 9.
$ 19 \equiv 1 \pmod 9 $, ma la somma delle sue cifre è 10...
E' corretto dire che "la somma delle cifre di un numero è congrua al numero stesso modulo 9", ma questo non ti permette di risolvere il problema...

Poi: $ 4 \equiv 2002 \pmod 9 $... non serve nessu conto per farlo, l'hai detto tu che basta vedere la somma delle sue cifre! :P

E infine, senza pensarci tanto mi viene da dire:
$ 2002 \equiv 0 \pmod {2002} $
$ 2002 \equiv 2002 \pmod 9 $
Ma 2002 non è soluzione...

Avatar utente
Bacco
Messaggi: 295
Iscritto il: 04 ago 2005, 16:03

Messaggio da Bacco » 16 giu 2006, 23:06

Mi sa che edriv ha visto giusto...

Il testo dice: " la somma delle cifre è 2002".

La congruenza è necessaria ma non sufficiente. Se la somma delle cifre è 2002 allora è vera, ma se è vera non è detto che la somma delle cifre sia proprio 2002. In pratica sai solo che il numero che devi trovare, se esiste, è della forma 2002 + 9k, ma non è detto che esista.

Facile vedere che 20020 è 2002 x 10 ma è anche 2002 + 9 x 2002. In realtà basta prendere 2002 moltiplicato per una qualunque potenza di 10...

Ciao

Avatar utente
Gauss_87
Messaggi: 294
Iscritto il: 21 gen 2006, 17:20
Località: Pisa

Messaggio da Gauss_87 » 17 giu 2006, 14:12

edriv ha scritto:Gaussz: rimango ancora dell'opinione che quel modo sia sbagliato.
Infatti, cosa intendi dicendo che:
in quanto la somma delle cifre di un numero è la sua congruenza modulo 9.
$ 19 \equiv 1 \pmod 9 $, ma la somma delle sue cifre è 10...
E' corretto dire che "la somma delle cifre di un numero è congrua al numero stesso modulo 9", ma questo non ti permette di risolvere il problema...

Poi: $ 4 \equiv 2002 \pmod 9 $... non serve nessu conto per farlo, l'hai detto tu che basta vedere la somma delle sue cifre! :P

E infine, senza pensarci tanto mi viene da dire:
$ 2002 \equiv 0 \pmod {2002} $
$ 2002 \equiv 2002 \pmod 9 $
Ma 2002 non è soluzione...
Si, credo sia chiaro a tutti che il sistema di quelle due congruenze abbia infinite soluzioni nei naturali e che non tutte queste infinite siano soluzione del problema di partenza, però tutte appartengono ad un'unica classe di resti modulo 9 e 2002 quindi la mia domanda di partenza era:
necessariamente troveremo tra quelle infinite soluzioni un numero che soddisfi la proprietà del testo?

Insomma credete proprio che non basti esibire il sistema di 2 congruenze per dimostrare l'esistenza! E allora è meglio esibire il numero!

Bye
Considerate la vostra semenza: fatte non foste a viver come bruti, ma per seguir virtute e canoscenza

Avatar utente
Boll
Messaggi: 1076
Iscritto il: 01 gen 1970, 01:00
Località: Piacenza

Messaggio da Boll » 17 giu 2006, 14:34

No, non basta, edriv ha perfettamente ragione. Un numero, ad esempio, può avere somma cifre 18,27,36,45 e la sua congruenza modulo 9 sarà sempre 0.

Anyway, eccovi un giovane Boll che si cimenta sullo stesso problema (ah, bei tempi!)

LINK!
"Ma devo prendere una n-upla qualsiasi o una n-upla arbitraria?" (Lui)

Avatar utente
Gauss_87
Messaggi: 294
Iscritto il: 21 gen 2006, 17:20
Località: Pisa

Messaggio da Gauss_87 » 18 giu 2006, 10:51

Ok grazie
Considerate la vostra semenza: fatte non foste a viver come bruti, ma per seguir virtute e canoscenza

Rispondi