sns 2002/2003#6

Rette, triangoli, cerchi, poliedri, ...
Rispondi
Avatar utente
cathy_88
Messaggi: 63
Iscritto il: 09 ago 2007, 10:42
Località: Aci Sant'Antonio (Catania)

sns 2002/2003#6

Messaggio da cathy_88 » 15 ago 2007, 20:46

La zona sacra di un'antica popolazione è costituita da un rettangolo lungo 60 metri e largo 20, suddiviso in tre quadrati di 20 metri di lato. Il primo quadrato è la base di una piramide retta, alta 50 metri; il secondo quadrato è libero; il trzo quadrato è la base di un edificio a forma di cubo.
In un particolare momento dell' anno, l'ombra della piramide si proietta sul cubo in modo tale che l'ombra del vertice della piramide cade esattamente nel centro della faccia superiore del cubo.
Si determini quanto vale l'area della parte in ombra della faccia del cubo rivolta verso la piramide.



La parte in ombra della facci del cubo rivolta verso la piramide è un trapezio con l'altezza passante per il punto medio degli spigoli a cui appartengono le basi,avente altezza $ h=2 $,base maggiore $ B $ e base minore $ b $.
Detti $ x $ e $ y $ l'altezza che avrebbe l'ombra della piramide (un triangolo) rispettivamente se non ci fosse il cubo e se la faccia del cubo verso la piramide fosse più alta di quella dell'ombra, si ha che:
$ \frac{40} {x} = \frac{30} {50} $ , cioè $ x=\frac{200} {3} $.
$ \frac{y} {50} = \frac{x-3} {x} $, cioè $ y=\frac{191} {4} $.
$ \frac{20} {x} = \frac{B} {x-3} $, cioè $ B=\frac{191} {100} $.
$ \frac{b} {y-2} = \frac{B} {y} $, cioè $ b=\frac{183} {100} $.
$ Area=\frac{(B+b)*h} {2}=\frac{(B+b)*2} {2}=(B+b)=\frac{191} {100} + \frac{183} {100}= \frac{187} {50} $

Pensate sia giusto :?:
Ohps.... :oops:
Mi correggo:
$ \frac{40} {x} = \frac{30} {50} $ , cioè $ x=\frac{200} {3} $.
$ \frac{y} {50} = \frac{x-30} {x} $, cioè $ y=\frac{55} {2} $
$ \frac{20} {x-10} = \frac{B} {x-30} $, cioè $ B=\frac{220} {17} $.
$ \frac{b} {y-20} = \frac{B} {y} $, cioè $ b=\frac{60} {17} $.
$ Area=\frac{(B+b)*h} {2}=\frac{(B+b)*20} {2}=(B+b)=(\frac{220} {17} + \frac{60} {17})*10= \frac{2800} {17} $
Ultima modifica di cathy_88 il 19 ago 2007, 15:04, modificato 3 volte in totale.
"Il matematico è come l'archeologo...le ipotesi sono leggende, la tesi il manufatto, ma la dimostrazione è la ricerca selvaggia verso l'obiettivo." (Lui)

¬[ƒ(Gabriel)³²¹º]¼+½=¾
Messaggi: 849
Iscritto il: 22 ott 2006, 14:36
Località: Carrara/Pisa

Messaggio da ¬[ƒ(Gabriel)³²¹º]¼+½=¾ » 15 ago 2007, 23:09

io farei così:

tracciamo il piano su cui giace la faccia superiore del cubo e usiamolo come piano di base; otteniamo un piramide simile a quella di partenza con rapporto sulle lunghezze di $ \frac{3}{5} $.
chiamiamo O il centro del quadrato (che era la faccia superiore del cubo), V il vertice della piramide, H il piede del'altezza della piramide e ABV la faccia laterale della pitamide rivolta verso O, K l'intersezione fra AB e HO.
$ OH = 4 $, $ HV = 3 $, $ HK = \frac{3}{5} $, $ OK = 4 - \frac{3}{5} = \frac{17}{5} $

il triangolo di cui si vuole trovare l'area è simile a ABO con rapporto fra le aree di $ OK^2 $, quindi l'area cercata sarà:

$ A = \frac{3}{5} \cdot \frac{17}{5} \cdot \frac{5^2}{17^2} = \frac{3}{17} $


EDIT: ops come non detto, innanizitutto le misure vanno moltiplicate tutte per 10 e poi io ho trovato l'area dell'ombra sulla faccia superiore del cubo :lol: :lol:

Avatar utente
cathy_88
Messaggi: 63
Iscritto il: 09 ago 2007, 10:42
Località: Aci Sant'Antonio (Catania)

Messaggio da cathy_88 » 15 ago 2007, 23:26

ma la faccia su cui cade l'ombra cercata non è quella laterale?
Quindi l'ombra non ha la forma triangolre ma trapezoidale.
"Il matematico è come l'archeologo...le ipotesi sono leggende, la tesi il manufatto, ma la dimostrazione è la ricerca selvaggia verso l'obiettivo." (Lui)

Avatar utente
cathy_88
Messaggi: 63
Iscritto il: 09 ago 2007, 10:42
Località: Aci Sant'Antonio (Catania)

Messaggio da cathy_88 » 15 ago 2007, 23:29

@Gabriel
anche io avevo fatto lo stesso identico errore....
"Il matematico è come l'archeologo...le ipotesi sono leggende, la tesi il manufatto, ma la dimostrazione è la ricerca selvaggia verso l'obiettivo." (Lui)

¬[ƒ(Gabriel)³²¹º]¼+½=¾
Messaggi: 849
Iscritto il: 22 ott 2006, 14:36
Località: Carrara/Pisa

Messaggio da ¬[ƒ(Gabriel)³²¹º]¼+½=¾ » 16 ago 2007, 00:10

vabè comunque poco cambia... la base minore è già calcolata: $ \frac{6}{17} $ la base maggiore per similitudine con l'ombra sul piano di base è $ 2 \cdot \frac{3}{17} \cdot \frac{11}{3} = \frac{22}{17} $ quindi $ A = \frac{28}{17} \cdot 100 $

memedesimo
Messaggi: 213
Iscritto il: 28 nov 2005, 17:17

Messaggio da memedesimo » 19 ago 2007, 10:31

Ciao...io ho provato a farlo e mi viene che l'area è $ 520/3 $. Per trovare le basi minore e maggiore sulla faccia del quadrato, ho trovato a che altezza il raggio di luce "colpisce" (anche se in realtà arriva dall'altra parte) la faccia della piramide rivolta verso il cubo. Poi ho calcolato quanto è larga la piramide in quel punto, e ho detto che questa era la base (rispettivamente maggiore e minore nei due casi). Dove ho sbagliato?

memedesimo
Messaggi: 213
Iscritto il: 28 nov 2005, 17:17

Messaggio da memedesimo » 19 ago 2007, 10:33

comunque mi accorgo adesso che numericamente le nostre risposte non sono diversissime...mumble mumble

Avatar utente
Zoidberg
Messaggi: 312
Iscritto il: 10 mar 2006, 15:41
Località: Pisa - Trebaseleghe (PD)
Contatta:

Messaggio da Zoidberg » 19 ago 2007, 12:31

Anche a me viene $ \displaystyle \frac{2800}{17} $
comunque mi accorgo adesso che numericamente le nostre risposte non sono diversissime...mumble mumble
:lol: questa era un affermazione da fisico! :D
Membro dell'associazione "Matematici per la messa al bando dell'associazione "Matematici per la messa al bando del Sudoku" fondata da fph" fondata da Zoidberg

Avatar utente
cathy_88
Messaggi: 63
Iscritto il: 09 ago 2007, 10:42
Località: Aci Sant'Antonio (Catania)

Messaggio da cathy_88 » 19 ago 2007, 15:14

Dimentico sempre di moltiplicare qualcosa per 10............ :oops:
"Il matematico è come l'archeologo...le ipotesi sono leggende, la tesi il manufatto, ma la dimostrazione è la ricerca selvaggia verso l'obiettivo." (Lui)

Avatar utente
Jordano
Messaggi: 48
Iscritto il: 12 mar 2007, 13:06
Località: Reggio Emilia

Messaggio da Jordano » 22 ago 2007, 14:42

anche a me viene $ 2800/17 $

Rispondi