kn ha scritto:Tibor Gallai ha scritto:Su, chi si avventura?
Io ho trovato questo metodo di "semplificazione graduale":
$ \displaystyle~ax^2+bxy+cy^2+dx+ey+f=0 $
Cerco qualche k per cui esista una fattorizzazione di $ \displaystyle~ax^2+bxy+ky^2 $ e scrivo
$ \displaystyle~(m_1x+n_1y)(m_2x+n_2y)+\ldots=0 $ (nei puntini rimane eventualmente un $ \displaystyle~y^2 $ e i termini di grado < 2).
Ora moltiplico per poter fare una sostituzione furba:
$ \displaystyle~(2m_1m_2x+2n_1m_2y)(2m_1m_2x+2m_1n_2y)+\ldots=0 $
Sia z la media aritmetica (intera) dei due fattori: ora posso scrivere
$ \displaystyle~(z+ty)(z-ty)+\ldots=0 $
Ora rimane un termine in x che posso (moltiplicando, eventualmente) trasformare in z unendolo a y. Ci siamo ridotti a un'equazione così:
$ \displaystyle~az^2+by^2+cz+dy+e=0 $
$ \displaystyle~az^2-ay^2+(a+b)y^2+c(z+y)+(d-c)y+e=0 $
$ \displaystyle~(az-ay+c)(z+y)+\ldots=0 $
Stesso trucco di prima e otteniamo un'equazione del tipo:
$ \displaystyle~v^2+ay^2+by+c=0 $
Cerchiamo un k' per cui $ \displaystyle~ay^2+by+k' $ si scompone e facendo di nuovo la media arriviamo a:
$ \displaystyle~av^2+bw^2+c=0 $
$ \displaystyle~a^2v^2+abw^2+ac=0 $
$ \displaystyle~(av)^2-(-ab)w^2=(-ac) $, che è (penso) l'equazione di Pell, che si risolve (non so come...)
Tornando indietro nelle sostituzioni otteniamo delle soluzioni con x e y razionali. Ovviamente scegliamo quelle con x e y interi.
Non detestatemi per le continue ridefinizioni di a, b, c, d, e, ma altrimenti finivo le lettere dell'alfabeto!