Dato un intero positivo $ n $, dimostrare che i seguenti due fatti sono equivalenti:
1) $ n $ non è primo ed è diverso da $ 1 $ e $ 6 $
2) $ |n-2\phi(n)|\le n-2\sqrt n $
Eulero vs SquareRoot
Eulero vs SquareRoot
[quote="julio14"]Ci sono casi in cui "si deduce" si può sostituire con "è un'induzione che saprebbe fare anche un macaco", ma per come hai impostato i conti non mi sembra la tua situazione...[/quote][quote="Tibor Gallai"]Ah, un ultimo consiglio che risolve qualsiasi dubbio: ragiona. Le cose non funzionano perché lo dico io o Cauchy o Dio, ma perché hanno senso.[/quote]To understand recursion, you fist need to understand recursion.
[tex]i \in \| al \| \, \pi \, \zeta(1)[/tex]
[tex]i \in \| al \| \, \pi \, \zeta(1)[/tex]
OMG quante induzioni!!!
Physics is like sex. Sure, it may give some practical results, but that's not why we do it.
Edriv: c=c+2; "tu sarai ricordato come `colui che ha convertito edriv alla fisica' ;)"
[quote="Tibor Gallai"]Alla fine sono macchine di Turing pure loro, solo un po' meno deterministiche di noi.[/quote]
Edriv: c=c+2; "tu sarai ricordato come `colui che ha convertito edriv alla fisica' ;)"
[quote="Tibor Gallai"]Alla fine sono macchine di Turing pure loro, solo un po' meno deterministiche di noi.[/quote]
Basta che tu ne faccia almeno una... 

[quote="julio14"]Ci sono casi in cui "si deduce" si può sostituire con "è un'induzione che saprebbe fare anche un macaco", ma per come hai impostato i conti non mi sembra la tua situazione...[/quote][quote="Tibor Gallai"]Ah, un ultimo consiglio che risolve qualsiasi dubbio: ragiona. Le cose non funzionano perché lo dico io o Cauchy o Dio, ma perché hanno senso.[/quote]To understand recursion, you fist need to understand recursion.
[tex]i \in \| al \| \, \pi \, \zeta(1)[/tex]
[tex]i \in \| al \| \, \pi \, \zeta(1)[/tex]