- i) ogni ragazzo gioca una e una sola volta contro tutti gli altri (possiamo quindi assumere che ogni partita ha la forma $ (x_i \text{ Vs } x_j) $ per qualche $ i \neq j $);
ii) se la partita $ (x_i \text{ Vs } x_j) $, con $ i \neq j $, termina con la vittoria del ragazzo $ x_i $, allora quest’ultimo guadagna $ 1 $ punto, mentre l’altro non guadagna alcun punto;
iii) se la partita $ (x_i \text{ Vs } x_j) $, con $ i \neq j $, termina con un pareggio allora viene assegnato $ \frac{1}{2} $ punto a ciascuno dei due ragazzi.
Mostrare che per qualche intero positivo $ k \le 29 $ esiste un insieme di ragazzi $ \{x_{t_1},x_{t_2},\ldots,x_{t_k}\} \subseteq X $ tali che, per ogni scelta dell’intero positivo $ i \le 29 $, il ragazzo $ x_i $ guadagna un numero intero di punti nel totale delle partite $ \{(x_i \text{ Vs } x_{t_1}),(x_i \text{ Vs } x_{t_2}),\ldots, (x_i \text{ Vs } x_{t_k})\} $.