Ps. $ \upsilon_2(x):=max\{y \in \mathbb{N}:2^y \mid x\} $.
a|upsilon_2(n!)-b
a|upsilon_2(n!)-b
Mostrare che per ogni $ (a,b) \in \mathbb{N}_0^2 $ esiste $ n \in \mathbb{N}_0 $ tale che $ a \mid \upsilon_2(n!)-b $. 
Ps. $ \upsilon_2(x):=max\{y \in \mathbb{N}:2^y \mid x\} $.
Ps. $ \upsilon_2(x):=max\{y \in \mathbb{N}:2^y \mid x\} $.
The only goal of science is the honor of the human spirit.