vorrei proporvi questo problema...mi spiace se non l\'ho tradotto ma non ne avevo voglia(al massimo chiedete!)..spero non sia gia\' stato postato..
<BR>
<BR>Prove that the set of solutions of the inequality
<BR>\\sum_{k=1}^{k=70} \\frac{k}{x-k} \\geq \\frac{5}{4}
<BR>is the union of non-intersecting intervals whose lengths have sum equal to 1988
<BR>
<BR> <IMG SRC="images/forum/icons/icon_eek.gif"> [addsig]
irish imo exercise
Moderatore: tutor
for everybody wanted this is the exercise in a better way to understand:
<BR>
<BR>
<BR>Show that the set of real numbers x which satisfy the inequality:
<BR>
<BR> 1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70) >= 5/4
<BR>
<BR>is a union of disjoint intervals, the sum of whose lengths is 1988.
<BR>
<BR>
<BR>...however I have found the solution..thanks lordgauss!!! <IMG SRC="images/forum/icons/icon_smile.gif"> <IMG SRC="images/forum/icons/icon_smile.gif"> <BR><BR>[ Questo Messaggio è stato Modificato da: franc il 15-03-2003 19:54 ]
<BR>
<BR>
<BR>Show that the set of real numbers x which satisfy the inequality:
<BR>
<BR> 1/(x - 1) + 2/(x - 2) + 3/(x - 3) + ... + 70/(x - 70) >= 5/4
<BR>
<BR>is a union of disjoint intervals, the sum of whose lengths is 1988.
<BR>
<BR>
<BR>...however I have found the solution..thanks lordgauss!!! <IMG SRC="images/forum/icons/icon_smile.gif"> <IMG SRC="images/forum/icons/icon_smile.gif"> <BR><BR>[ Questo Messaggio è stato Modificato da: franc il 15-03-2003 19:54 ]