
scrivere quanti modi ci sono per disporre n oggetti in k posti
Le combinazioni di n elementi a k a k (k ≤ n) sono tutti i sottoinsiemi di k elementi di
un dato insieme di n elementi, tutti distinti tra loro. La definizione appare molto simile a
quella delle disposizioni, ma `e importante capirne la differenza: le disposizioni differiscono
per la presenza di elementi diversi o per l’ordine degli elementi, le combinazioni unicamente
per la presenza di elementi diversi. Un tipico esempio di combinazione `e un’estrazione a
premi.
Le combinazioni con ripetizione di n oggetti di classe k sono i raggruppamenti che si
possono formare scegliendo k elementi tra gli n di un insieme dato, ma ammettendo che
ogni elemento possa trovarsi ripetuto nel gruppo un qualunque numero di volte: in questo
modo ogni gruppo differir`a dall’altro per almeno un elemento (o per quante volte `e presente
un elemento). Per visualizzare la cosa in un modo alternativo, a ogni elemento i vogliamo
associare il numero di volte che esso `e presente $ r_i$
, facendo in modo che $r_1+r_2+. . .+r_n = k$
(cio`e il totale degli elementi sia k). Il numero di tali raggruppamenti `e espresso dalla
formula:
$ C_{n,k}= \displaystyle{\dfrac{(n+k-1)!}{k!(n-1)!}}= $$\binom{n+k-1}{k}$
il testo dice disporre! se io, ad esempio ho l'insieme di 6 elementi, $ A : {1, 2, 3, 4, 5, 6 } $ e li devo disporre in 3 posti, la soluzione 1 2 3 sarà differente da 3 2 1, quindi l'ordine è importante, quindi è una disposizione...o no?io.gina93 ha scritto:penso che sia vecchio..![]()
scrivere quanti modi ci sono per disporre n oggetti in k posti
si esattamente, andrebbe detto di piùClaudio. ha scritto:Beh bisognerebbe dire prima di tutto se gli oggetti sono tutti uguali o meno, poi in generale io lo interpreto come disporre degli oggetti in dei cassetti, che non centra con le disposizioni, poichè nello stesso cassetto puoi anche metterne più di uno e non è l'ordine che conta.