Esponenziale

Numeri interi, razionali, divisibilità, equazioni diofantee, ...
Rispondi
pepperoma
Messaggi: 82
Iscritto il: 03 giu 2010, 14:26
Località: Bari
Contatta:

Esponenziale

Messaggio da pepperoma »

Dopo mesi di assenza ritorno sul forum con questa diofantea interessante.

Trovare tutti gli interi positivi $ x,y $ tali che $ x^y-y^x=1. $
ant.py
Messaggi: 140
Iscritto il: 18 set 2011, 11:36

Re: Esponenziale

Messaggio da ant.py »

mi sbaglio o questo http://en.wikipedia.org/wiki/Catalan%27s_conjecture dimostra che l'unica soluzione è (3, 2) ? :)
Anti-intellectualism has been a constant thread winding its way through our political and cultural life. Nurtured by the false notion that democracy means that "My ignorance is just as good as your knowledge. "
LeZ
Messaggi: 284
Iscritto il: 08 mag 2011, 21:28

Re: Esponenziale

Messaggio da LeZ »

Se non sbaglio esiste un teorema molto interessante, il quale afferma che le uniche soluzioni intere positive ad equazioni nella forma $ x^a-y^b=1 $ sono date dalla coppia $ (3,2) $
Avatar utente
Drago96
Messaggi: 1147
Iscritto il: 14 mar 2011, 16:57
Località: Provincia di Torino
Contatta:

Re: Esponenziale

Messaggio da Drago96 »

LeZ ha scritto:Se non sbaglio esiste un teorema molto interessante, il quale afferma che le uniche soluzioni intere positive ad equazioni nella forma $ x^a-y^b=1 $ sono date dalla coppia $ (3,2) $
E' quello scritto appena sopra... ;)
Congettura di Catalan o Teorema di Mihailescu... sono la stessa cosa... :)

Comunque quest'equazione l'avevo già vista da qualche parte sul forum... :?
Imagination is more important than knowledge. For knowledge is limited, whereas imagination embraces the entire world, stimulating progress, giving birth to evolution (A. Einstein)
pepperoma
Messaggi: 82
Iscritto il: 03 giu 2010, 14:26
Località: Bari
Contatta:

Re: Esponenziale

Messaggio da pepperoma »

So che è un caso particolare di quell'equazione, ma a differenza di quella generale questa ammette una soluzione elementare che è quanto chiedevo. (sono piuttosto nuovo del forum, è probabile che l'abbiano già postata prima di me)
Rispondi