Per ogni intero positivo $n$ e reale $k$ sia $\sigma_k(n):=\sum_{d\mid n}{d^k}$.
Mostrare che esistono infiniti interi positivi $n$ tali che $\sigma_1(n)<\sigma_1(n+1)<\sigma_1(n+2)$.
$\sigma_1(n)<\sigma_1(n+1)<\sigma_1(n+2)$
$\sigma_1(n)<\sigma_1(n+1)<\sigma_1(n+2)$
The only goal of science is the honor of the human spirit.