Visto che la fisica è bella (e anche di moda ultimamente) e per ravvivare un poco anche questa parte del forum, ecco un problema abbastanza noto:
Un oracolo si trova sul post enneperduecentocinquantunomenouno dove dice cose molte sagge e giuste. Un impavido viaggiatore decide di visitarlo perché in disaccordo con le sue predizioni (che si riveleranno vere). Per giungervi, tuttavia, per qualche motivo deve risolvere una prova di abilità:
È dato un tavolo grande e fissato a terra; su di esso ci sono due mattoni di colore bordeaux, entrambi di lunghezza l. Il primo sporge dal bordo del tavolo di un segmento x, il secondo è posizionato sul primo e sporge di un segmento y rispetto alla fine del primo (disegnino con altre lettere). Si chiede di trovare il massimo valore possibile per x+y.
Equilibrio sul bordo del bordo
- karlosson_sul_tetto
- Messaggi: 1459
- Iscritto il: 10 set 2009, 13:21
- Località: Napoli
Equilibrio sul bordo del bordo
"Inequality happens"
---
"Chissa se la fanno anche da asporto"
---
"Chissa se la fanno anche da asporto"
Uhm probabilmente sto dicendo castronerie ma proviamoci. Allò come prima cosa definiamo $x_1,x_2$ i centri di massa dei due mattoni.rispettivamente quello poggiato sul tavolo e quello ad esso appoggiato. Ora immaginiamo un riferimento in cui l'ascissa dello spigolo del tavolo da cui sporgono sia $0$. A questo punto dovrò avere $x_1+x_2 \leq 0$. Notiamo inoltre che $y$ può valere al massimo $ \displaystyle \frac{L}{2}$ e questo avviene quando $x_2$ coincide con $x$. Ora si ha data la geometria del mattone $\displaystyle x_1=x - \frac{L}{2}$. Ora notiamo che per ottenere le condizioni di equilibrio massimizzando $x+y$ si deve $x_1+x_2=0$. Sostituiamo con quanto ottenuto e si ha $\displaystyle 2x=\frac{L}{2}$. Da cui $\displaystyle x= \frac{L}{2}$ e quindi $\displaystyle x+y= \frac{3L}{4}$.
Cristo è l'unica soluzione reale. Tutte le altre sono complesse coniugate
Un corpo maleducato immerso in un liquido jastemma.
Un corpo maleducato immerso in un liquido jastemma.
- karlosson_sul_tetto
- Messaggi: 1459
- Iscritto il: 10 set 2009, 13:21
- Località: Napoli
Re: Equilibrio sul bordo del bordo
Il ragionamento è giusto, il risultato pure 

"Inequality happens"
---
"Chissa se la fanno anche da asporto"
---
"Chissa se la fanno anche da asporto"
- Troleito br00tal
- Messaggi: 683
- Iscritto il: 16 mag 2012, 22:25