Incollamenti al bordo -Finale gara a squadre Cesenatico 2015
Incollamenti al bordo -Finale gara a squadre Cesenatico 2015
CoMathio e CoLuigbnitz hanno raccolto tutti i $ 2015^3 $ cubetti unitari bonus del secondo livello e per dispetto li hanno
incollati assieme in un grande cubo di lato 2015. Mathio per usarli deve prima scollarli, e per farlo dà delle sonore
craniate, ognuna delle quali rimuove la colla lungo la superficie esterna di un cubo di lato intero a sua scelta fra quelli
costituiti da cubetti del cubo grande. Quante testate deve dare come minimo per scollare completamente tutti i cubetti?
Qualcuno ha qualche idea su come si possa risolvere?
incollati assieme in un grande cubo di lato 2015. Mathio per usarli deve prima scollarli, e per farlo dà delle sonore
craniate, ognuna delle quali rimuove la colla lungo la superficie esterna di un cubo di lato intero a sua scelta fra quelli
costituiti da cubetti del cubo grande. Quante testate deve dare come minimo per scollare completamente tutti i cubetti?
Qualcuno ha qualche idea su come si possa risolvere?
-
- Messaggi: 79
- Iscritto il: 03 dic 2014, 23:23
Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
Ragazzi, non capisco il testo, qualcuno potrebbe spiegarmelo? Praticamente il prode eroe stacca 1 cubetto a piacere per ogni capocciata o ne scolla un cubo di lato a piacere dal maxi-cubo? E questo eventuale cubo lo stacca dove vuole lui o no?
-
- Messaggi: 2
- Iscritto il: 05 mag 2015, 20:27
Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
Un cubo di lato a piacere dal maxi-cubo, dove vuoleEnigmatico ha scritto:Ragazzi, non capisco il testo, qualcuno potrebbe spiegarmelo? Praticamente il prode eroe stacca 1 cubetto a piacere per ogni capocciata o ne scolla un cubo di lato a piacere dal maxi-cubo? E questo eventuale cubo lo stacca dove vuole lui o no?

Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
Io in gara l'ho "risolto" molto a casissimo! Se vuoi ti dico il mio metodo ma non c'è un minimo di dimostrazione! 

$ \mbox{ }\mbox{ } $And God said : $ \displaystyle c^2 \mu_0 \varepsilon_0 =1 $,
and then there was light.
$ \mbox{ }\mbox{ } $Tsune ni shinen kufu seyo
and then there was light.
$ \mbox{ }\mbox{ } $Tsune ni shinen kufu seyo
Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
Hint lieve: provate a fare prima il caso 2-dimensionale (griglia quadrata, ogni mossa è scollorare i lati di un quadrato). Che, per la cronaca, era il problema 6 di Cesenatico '96.
--federico
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]
[tex]\frac1{\sqrt2}\bigl(\left|\text{loves me}\right\rangle+\left|\text{loves me not}\right\rangle\bigr)[/tex]
Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
Si, per favore, indicami il metodo che hai usato: certamente mi aiuterà a comprendere il problema...simone256 ha scritto:Io in gara l'ho "risolto" molto a casissimo! Se vuoi ti dico il mio metodo ma non c'è un minimo di dimostrazione!
-
- Messaggi: 79
- Iscritto il: 03 dic 2014, 23:23
Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
A me viene un risultato pazzesco...
Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
Io non conosco il risultato esatto. So soltanto che le ultime quattro cifre sono 8056Enigmatico ha scritto:A me viene un risultato pazzesco...
Re: Incollamenti al bordo -Finale gara a squadre Cesenatico
Prendi 4 vertici del cubo che sono anche vertici di un tetraedro regolare, quindi una diagonale di una faccia e la diagonale sghemba sulla faccia opposta. A questo punto concentrati su un vertice, e con una testata isoli il cubo di lato 1 che possiede questo vertice; poi il cubo di lato 2 che possiede quel vertice; e via...
Dai in totale 2014 testate e fai tipo uno strano effetto matriosca.
Ripeti sta cosa con i 4 vertici e ti esce 8056. Non mi ricordo se era il risultato giusto ma mi fido di voi
Dai in totale 2014 testate e fai tipo uno strano effetto matriosca.
Ripeti sta cosa con i 4 vertici e ti esce 8056. Non mi ricordo se era il risultato giusto ma mi fido di voi

$ \mbox{ }\mbox{ } $And God said : $ \displaystyle c^2 \mu_0 \varepsilon_0 =1 $,
and then there was light.
$ \mbox{ }\mbox{ } $Tsune ni shinen kufu seyo
and then there was light.
$ \mbox{ }\mbox{ } $Tsune ni shinen kufu seyo