Sia $p$ un primo dispari. Trovare il più piccolo intero positivo $n$ tale che esistono due polinomi $f(x)$ e $g(x)$ per cui
\[n=(x-1)\cdot f(x)+(x^{p-1}+x^{p-2}+\ldots+x+1)\cdot g(x).\]
Io continuo a mettere problemi perché sono tutti belli
Io continuo a mettere problemi perché sono tutti belli
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo
Re: Io continuo a mettere problemi perché sono tutti belli
Testo nascosto:
-
Nadal21
Re: Io continuo a mettere problemi perché sono tutti belli
Ok. ma che procedimento hai usato per risolverlo ?
Re: Io continuo a mettere problemi perché sono tutti belli
A coefficienti interi i polinomi
"Sei il Ballini della situazione" -- Nikkio
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo
"Meriti la menzione di sdegno" -- troppa gente
"Sei arrivato 69esimo? Ottima posizione!" -- Andrea M. (che non è Andrea Monti, come certa gente pensa)
"Se ti interessa stanno inventando le baricentriche elettroniche, che dovrebbero aiutare a smettere..." -- Bernardo
Re: Io continuo a mettere problemi perché sono tutti belli
Allora poni $x=1$ e hai $n=p g(1)$, ovvero $n \geq p$. Ora con $g(x)=1$ e $f(x)$ come nella soluzione di prima va sempre bene, quindi $n=p$.