Definitivamente phi(n) > pi(n)
Definitivamente phi(n) > pi(n)
Siano $ \phi(\cdot) $ la funzione di Eulero e $ \pi(n) $ il numero dei primi naturali $ \le n $, per ogni $ n\in\mathbb{N}^+ $. Utilizzando unicamente risultati della teoria elementare dei numeri (e quindi, in particolare, evitando di coinvolgere ogni sorta di disuguaglianze per $ \pi(\cdot) $ derivate dalla teoria analitica), mostrare che definitivamente $ \phi(n) > \pi(n) $. 
-
Simo_the_wolf
- Moderatore
- Messaggi: 1053
- Iscritto il: 01 gen 1970, 01:00
- Località: Pescara
Secondo te cosa significa che la disuguaglianza è verificata definitivamente!?Simo_the_wolf ha scritto:io aggiungerei qualche bound... infatti per n=4,36 si ha uguaglianza e per n=6,12,24,60,30 è reversed ad esempio.
Ah, davvero!? Strano, visto che non ci vuole nulla, per via analitica, a provare che definitivamente $ \displaystyle\pi(n) < \frac{3n}{2 \ln n} < \phi(n) $.Simo_the_wolf ha scritto:Anzi ti dirò... Esistono infiniti $ n $ tali che $ \phi (n) < \pi (n) $...
-
Simo_the_wolf
- Moderatore
- Messaggi: 1053
- Iscritto il: 01 gen 1970, 01:00
- Località: Pescara