bestiedda ha scritto:[...]Per $ $b>3104 $ , analogamente, abbiamo tante coppie $ $(a,b) $ quanti sono gli elementi di $ $S $ maggiori di $ $b $[...]
Ciao bestiedda
potevi anche chiarire xo che $ 3014=AM(2008,4200) $..
bestiedda ha scritto:[...] è dato da $ $2(1+2+...+1095)+1096=\frac{2(1095\cdot1096)}{2}=1200120 $.
$ 2\sum_1^n{i}+(n+1)=(n+1)^2 $..
bestiedda ha scritto:[...]Questo numero va moltiplicato per il numero delle possibili disposizioni di $ $a,b,c $ , ovvero 6, perchè il problema non esplicita che le terne debbano essere in progressione aritmetica ordinata. $ $1200120\cdot6=7200720 $[...]
mmm..e perchè?(questo pezzo poi non c'era nella tua soluzione..)
bestiedda ha scritto:[...]Ora togliamo questo numero al numero di triple totali e otteniamo il numero di triple NON in progressione aritmetica : $ $1755376616-7200720=1748175896 $[...]
Perchè una volta li ordini e una volta no?
bestiedda ha scritto:Il problema chiedeva se era possibile scegliere $ $5^3 $ elementi dell'insieme tali che nessuna possibile terna fosse in progressione aritmetica, ovvero se era possibile che vi fossero $ ${125\choose 3}=317750 $ triple di naturali distinti dell'insieme $ $S $ NON in progressione aritmetica, e questo è palesemente vero in quanto $ $1748175896>317750 $
Ma soprattutto questo punto..nessuno nota niente?